
Encapsulation and networking
offload support

Networking workshop @LKS
August 19, 2014

Tom Herbert <therbert@google.com>

Topics

● Prospects/requirements
● Essential offloads

○ Packet steering
○ RX/TX checksum offload
○ TSO/GSO
○ LRO/GRO

● Other offloads

Encapsulation cases

● Non-virtualization
○ GRE, MPLS, IPIP, SIT
○ Source routing
○ IPv6 encap over IPv4 infrastructure
○ L2,L3 over L3
○ L4/L3 (e.g. QUIC, ESP/UDP)
○ DC encryption on the horizon

● Virtualization
○ VXLAN, nvgre (GUE, geneve, LISP, L2TP)
○ Overlay networks, isolation for third party guests
○ “internal” customers as tenants
○ L2,L3 over L3
○ Virtual network ID is critical value

Requirements of networking stack

● Efficient data path that provides security,
performance, and control

● Good solution should not require any
special, encapsulation protocol-aware HW
○ Advanced HW may augment stack functions

● Core kernel paths should be encap-protocol
agnostic also
○ Encap might not even be kernel based

UDP based encapsulation

● UDP works with existing HW infrastructure
○ RSS in NICs, ECMP in switches
○ Checksum offload

● Used in nearly all encap, NV data protocols
○ VXLAN, LISP, MPLS, GUE, Geneve, NSH, L2TP

● Likelihood UDP based encapsulation (aka
foo/UDP) becomes ubiquitous
○ In time most packets in DC could be UDP!

Packet steering

● Want flow hash corresponding to inner
packet
○ Host, NIC, switches are interested in this
○ RSS/ECMP/RPS/RFS/aRFS

● Q: How to avoid HW needing to do deep
parsing into encapsulation?

Steering for UDP encapsulation

● Leverage existing UDP flow hash
● Sender: set UDP to source port to hash of

inner packet (udp_flow_src_port)
● Receiver: 5-tuple hash over outer headers

provides a flow hash of inner packet
● Need to start enabling UDP RSS on devices

for this to get most benefit!

Steering for non-UDP

● Encapsulation over IPv6
○ Flow label set to hash (auto_flowlabels, sockopt)
○ Receiver uses flow label as “ports” in 5-tuple hash

calculation
● GRE

○ Need to perform deep parsing
○ keyID might be sufficient

● Other protocols
○ Deep parsing to find inner L4 (doesn’t always work)
○ Use something in encap header resembling GRE

keyID or flow label

Checksum offload

● Possibility of two or even three checksums in
a single packet
○ e.g. IP->UDP->GRE->IP->TCP

● Note that outer checksums protect more and
potentially cover inner checksums

● But, switch vendors are pushing to avoid
using checksums in UDP encapsulation

Receive checksum overhaul

● Prerequisite to checksum/encapsulation
● Goals

○ Define what CHECKSUM_UNNECESSARY means
○ Preserve CHECKSUM_COMPLETE through

encapsulation layers
○ Don’t do skb_checksum more than once per packet
○ Make GRO/non-GRO csum processing consistent
○ Unified set of stanard checksum functions

● Almost done! :-)

RX checksum offload

● CHECKSUM_COMPLETE
○ Always works, any number of checksums

● CHECKSUM_UNNECESSARY
○ Stack allows two levels (skb->encapsulation)
○ Plan on generalizing (skb->csum_level), will allow up

to four

Checksum unnecessary conversion

● Most NICs can provide checksum
unnecessary for UDP packets

● If checksum is non-zero, derive checksum
complete when processing UDP packet
 skb->csum = ~pseudo_hdr_csum(skb)
 skb->ip_summed = CHECKSUM_COMPLETE

● After conversion, any encapsulated
checksums is verified by using skb->csum

● Avoid skb_checksum and allow more GRO!

TX checksum offload

● Only one checksum in packet
○ Inner transport checksum (e.g. TCP)
○ NETIF_F_HW_CSUM works
○ NETIF_F_IP_CSUM won’t work unless NIC knows

how to parse encapsulation protocol
● Two or more checksums

○ Outer packet (e.g. UDP) and inner transport packet
○ Stack and NICs do not support
○ Alternative: Remote Checksum Offload

Remote Checksum Offload

● Just “like” HW offload except we defer
processing to peer

● Useful to provide csum offload for encap’ed
packet and csum enabled for outer header
(e.g. UDP)

● Need 32 bit field in encapsulation header
○ Need extensible encap protocol
○ GUE, geneve :-), … VXLAN, LISP :-(

Remote csum offload operation

● Fields in encap header for encap’ed csum
○ Start - checksum starts relative to UDP header
○ Offset - where to write checksum

● On TX (TCP over UDP example)
○ tcp->check = ~pseudo_inner_hdr_csum
○ encap->start = offset of TCP header
○ encap->check = offset of tcp->check

● On RX
○ Need skb->csum at UDP (either from csum complete

or conversion from unnecssary)
○ *(encap->offset) = skb->csum - skb_csum(skb,

0, encap - start)

Minimal HW checksum support

● Combine checksum unnecessary
conversion + remote checksum offload

● Minimal requirements of NIC are then
○ CHECKSUM_UNNECESSARY for UDP
○ NETIF_IP_CSUM

● This allow csum offload for encapsulation
across a large variety of NICs

● Using UDP checksum advantages
○ More coverage over packet, encap hdr (i.e. vnid)
○ Net better performance for encap!

LRO/GRO

● LRO for encap protocols pretty much
requires protocol specific deep parsing

● GRO is well supported in Linux
○ Work to make checksum handling consistent with

normal path
● Open question: should GRO ever to

skb_checksum over packet
○ Mixed messages right now
○ GRE allows
○ UDP tunnel doesn’t
○ Can’t configure GRO and no csum offload

TSO/GSO

● Partially generic support
● UDP tunnes

○ SKB_GSO_UDP_TUNNEL
○ SKB_GSO_UDP_TUNNEL_CSUM
○ SKB_GSO_UDP_TUNNEL_RCO ?

● Works with various encaps (e.g. VXLAN,
GUE) as long as they don’t have:
○ Seq #’s
○ Packet lengths
○ Checksum/packet authentication
○ Anything that must be uniquely set per segment

TSO/LRO to guest driver

● Greatest value in segmentaiton offloads
when plumbing then guest OS <-> host
driver (device)

● On TX, guest uses TSO interface, host
kernel converts to TSO/GSO

● On RX, host probably uses GRO, converts
to LRO to guest device

Other rx offloads

● Protocol specific hash, LRO, packet steering
● rx-filter: Destination UDP port->action, queue
● Example: deep parsing for a flow hash

○ UDP from Internet may not be able to arbitrarily set
source port (e.g. to go though stateful NAT)

○ Deep parsing in this case may have merit
● Should not affect core stack

○ Stack should not care that UDP sockets are tunnels
or what protocol is running over them

○ IMO, ndo_add_vxlan_port not necessary (should not
be extended for other encap protocols)

