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I XDP is a (in kernel) free programmable network stack
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I Only the really needed parts of the network stack are called

I Should give more flexibility and better performance

I So make XFRM one of these programmable parts!
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Some design goals

I Should work as a forwarding fastpath

I Should skip everything in the stack that is not needed

I Fastpath flows should be configured without user interaction

I Should use a ’eBPF flow hashmap’ to cache flows

I Don’t reimplement XFRM in eBPF XDP → use existing
XFRM stack
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Challenges on integrating XFRM into XDP

I Hooks in very early at L2 (before allocating a sk buff)

I No sk buff!!!

I packet representation in XDP with struct xdp buff
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Challenges

Packet representation in XDP:

1 s t ruc t x d p b u f f {
2 void ∗ data ;
3 void ∗ d a t a e n d ;
4 void ∗ data meta ;
5 void ∗ d a t a h a r d s t a r t ;
6 unsigned long h a n d l e ;
7 s t ruc t x d p r x q i n f o ∗ r x q ;
8 } ;

I data: Pointer to the start of the packet data
I data end: Pointer to the end of the packet data
I data meta: Pointer to optional metadata (max. 32 byte)
I data hard start: Pointer to maximum possible headroom
I handle: new???
I rxq: Pointer to an internal receive queue metadata structure
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data hard start <= data meta <= data < data end
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Adjusted packet representation in XDP:
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I BPF helpers have to be created to call XFRM functions

I Problem: Most XFRM code relies on having a sk buff
I Two options:

I Convert XFRM to not use sk buff
I Use common metdata structure
I Advantage: No code duplication
I Disadvantage: Easy to introduce bugs

I Create new xfrm xdp callbacks
I Advantage: Standard XFRM is not touched
I Disadvantage: Creates lot of new code

I Need to choose one option before we start implementing
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I No violation of the systems security policy
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I Maybe we need some early eBPF TC hook for the sk buff case
I Could be used to cache flow informations
I Maybe parts of the local input stack can be bypassed too
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