\

" SKB creation outside drivers:
using metadata and HW-
offloads?

Toke Hgiland-Jargensen (Red Hat)
Jesper Dangaard Brouer (Red Hat)

Netconf
Q Red Hat SKB creation outside drivers: using metadata and HW-offloads? BOStOﬂ, June 2019

Framing XDP

XDP: in-kernel programmable (eBPF) layer before netstack

e (AF_XDP is our selective kernel-bypass to userspace)

XDP ensures that Linux networking stays relevant

e Operates at L2-L3, netstack is L4-L7

XDP is not first mover, but we believe XDP is different and better

e Flexible sharing of NIC resources
e Killer feature: Integration with Linux kernel
= This talk is about extending this integration further

Red Hat SKB creation outside drivers: using metadata and HW-offloads? - Jesper Dangaard Brouer <brouer@redhat.com>

mailto:brouer@redhat.com

Move SKB allocations out of NIC drivers

Goal: Simplify driver, via creating SKB inside network-core code

e Happens today via Xxdp_frame in both veth and cpumap

The xdp_frame is placed in top of data-frame (data_hard_start)
e Currently 32-bytes

Issue: SKB's created this way are lacking HW-offloads like:

e HW checksum info (for skb->1ip_summed + skb->csum)
e HW RX hash (skb_set_hash(hash, type))
e (these are almost always needed... tempted to extend xdp_frame)

Red Hat SKB creation outside drivers: using metadata and HW-offloads? - Jesper Dangaard Brouer <brouer@redhat.com>

mailto:brouer@redhat.com

Other HW-offloads

Other existing offloads, used by SKBs, but not always enabled

e VLAN (__vlan_hwaccel_put_tag())
e RX timestamp

= HW skb_hwtstamps() (storedin skb_shared_info)
m Earlier XDP software timestamp (for skb->tstamp)
e RX mark (skb->mark supported by mix5)

Other potential offloads, which hardware can do (but not used by SKB):

e Unique u64 flow identifier key (mIx5 HW)
e Higher-level protocol header offsets

= RSS-hash can deduce eg. IPv4/TCP (as frag not marked as TCP)
= But NIC HW have full parse info avail

Red Hat SKB creation outside drivers: using metadata and HW-offloads?

Jesper Dangaard Brouer <brouer@redhat.com>

mailto:brouer@redhat.com

The holy-grail for HW-offloads

The GOAL is to come-up with a Generic Offload Abstraction Layer...

Generic and dynamic way to transfer HW-offload info

e Only enable info when needed
e Both made available for SKB creation and XDP programs

The big questions are:

e \Where to store this information?
e How to make it dynamic?

Red Hat SKB creation outside drivers: using metadata and HW-offloads? - Jesper Dangaard Brouer <brouer@redhat.com>

mailto:brouer@redhat.com

Simple static solution

The simple solution that isn't as dynamic as we want...

Have drivers send along extra struct with info to xdp_do_redirect()
e Use info-struct when calling convert_to_xdp_frame()
Drivers have to fill-out info-struct every time

e Driver basically transfer info from descriptor to info-struct
e All drivers have to agree on struct layout

The XDP-prog don't have access to info-struct

e As xdp_do_redirect () happens after XDP-prog runs
m (could be solved by also giving info-struct to XDP-proq)

Red Hat SKB creation outside drivers: using metadata and HW-offloads? - Jesper Dangaard Brouer <brouer@redhat.com>

mailto:brouer@redhat.com

Use NIC frame descriptor directly? (No)

This came up before... why not give NIC frame descriptor directly to BPF?

Why can't we use frame descriptor directly?

e \Very compact bit format and union overloaded
m Even if possible to describe via BTF
» Prog to decode too specific to vendor HW (+ revision)
e HW revisions have erratas (e.g. ixgbe csum invalid in one HW rev)
m A driver translation function should handle/hide this
e With cpumap xdp_frame is read on remote CPU, descriptor not-valid

Red Hat SKB creation outside drivers: using metadata and HW-offloads? - Jesper Dangaard Brouer <brouer@redhat.com>

mailto:brouer@redhat.com

Where to store the offload info?
At least info-struct should be described via BTF

Instead of separate info-struct, store info-struct in data-frame area?

e Two options:
m Use XDP metadata area (already avail to XDP)
= Use areas "“inside” xdp_frame (or dynamic area after xdp_frame ends)
o not curr avail to XDP (as xdp_frame is created after XDP-prog ran)

Note: Cannot store info-struct inside xdp_rxqg_info

e Because not a per frame data-structure, and xdp_frame use bulk processing

Red Hat SKB creation outside drivers: using metadata and HW-offloads? - Jesper Dangaard Brouer <brouer@redhat.com>
g

mailto:brouer@redhat.com

Background: What is XDP-metadata area?

Background slide, what do we have today...

XDP have 32 bytes metadata in front of payload (xdp_buff->data_meta)

e XDP tail-calls can read this (transfer info between tail-calls)
e TC eBPF (cls_bpf) can read this, and update SKB fields

m E.g.save XDP lookup and use in TC eBPF hook
e AF_XDP raw frames have this metadata avalil in front of payload

Red Hat SKB creation outside drivers: using metadata and HW-offloads? - Jesper Dangaard Brouer <brouer@redhat.com>

mailto:brouer@redhat.com

Safe to allow XDP to update offload info?

Can we allow XDP to update offload info area?

e Happens before SKB field update
e Are there any safety issues? (kernel netstack stability)
e XDP could potentially fix HW-offload fields

Likely need some boundary checks
e Especially for higher-level protocol header offsets
Can verifier tell us

e if XDP prog changed metadata area?

Red Hat SKB creation outside drivers: using metadata and HW-offloads? - Jesper Dangaard Brouer <brouer@redhat.com>

10

mailto:brouer@redhat.com

Lacking knowledge about BTF

When info-struct is described via BTF

e Can kernel code understand BTF and act dynamically???
m [nconvert_to_xdp_frame() code

m And in xdp_frame to SKB update fields code?
Hack: if driver knows order struct-members can appear in

e Walk BTF format and create bitmap with enabled members
e \When member is matched, increment iterator with member size
e (Fear thisis slow, due to data dependency on iterator)

Red Hat SKB creation outside drivers: using metadata and HW-offloads? - Jesper Dangaard Brouer <brouer@redhat.com>

1

mailto:brouer@redhat.com

Driver call-back function

Driver fill-out “info-struct”, thus knows layout

e xdp_frame to SKB conversion, use driver call-back to update SKB fields?
One step further

e Could driver call-back be a BPF-prog, that update SKB fields?

Red Hat SKB creation outside drivers: using metadata and HW-offloads? - Jesper Dangaard Brouer <brouer@redhat.com>

12

mailto:brouer@redhat.com

How to configure driver for this?

Next challenge: What is the interface for configuring this?

e Extending ndo_bpf seems obvious
e But there is a dependency between

m info-struct, driver populate, and SKB-update call-back
= |[f XDP-prog use BTF-metadata layout

o how to handle (or lock) BTF-layout changes runtime

Red Hat SKB creation outside drivers: using metadata and HW-offloads? - Jesper Dangaard Brouer <brouer@redhat.com>

13

mailto:brouer@redhat.com

Driver static approach

Steps for static driver

o Step#A: Driver define static info-struct for metadata area
m Create BTF-format (via macros) and register with BPF (?)
= Adjust xdp_buff->data_meta with info-struct size

e Step#B: Driver function populates metadata with offloads from descriptor
m |t knows about HW offloads curr enabled, revisions and quirks

e XDP-progis called (how does user get BTF-format?)

o Step#C.: Driver static SKB-update call-back
= Via XDP-redirect (either cpoumap or veth) call-back is invoked with SKB

Red Hat SKB creation outside drivers: using metadata and HW-offloads? - Jesper Dangaard Brouer <brouer@redhat.com>
g

14

mailto:brouer@redhat.com

More dynamic approach
Same steps: Step#A + Step#B

o Step#A: Driver defines static info-struct for metadata area
m Create BTF-format (via macros) and register with BPF
e Step#B: Driver function populates metadata with offloads from descriptor

Dynamic BPF call-back

e Step#C: Driver SKB-update call-back is a BPF-prog
e Validation trick:
m This SKB-update BPF-prog, must have map named ‘'metadata’
= map must have BTF-format that matches driver BTF-format
o checked on attach via ndo_Dbpf, else reject

Red Hat SKB creation outside drivers: using metadata and HW-offloads? - Jesper Dangaard Brouer <brouer@redhat.com>
g

15

mailto:brouer@redhat.com

When to enable populate metadata

The populate metadata function is not enabled by default

e Driver creates real BPF-map with BTF-format for metadata (as value)
= (Key is driver “id"” for this map, allow for more maps per driver)
e Add ndo_bpf query for metadata-map, return map-fd

m Both XDP-prog and SKB-update prog can use map
Trigger to enable/disable, when map-user gets attached/detached

e () ndo_bpf attach SKB-update BPF-prog that uses this map,
e and/or when (2) ndo_bpf XDP-prog being attached (that uses map)

m Both cases, check BTF-format match or reject attach
e The map-refcnt, determines when to disable populate metadata again

Red Hat SKB creation outside drivers: using metadata and HW-offloads? - Jesper Dangaard Brouer <brouer@redhat.com>

[S

mailto:brouer@redhat.com

Selecting metadata layouts

Driver can have multiple metadata-maps

e |dentified via map-key as id

e (the map-value define metadata layout via BTF-format)

e Each map (likely) have different driver populate function associated

Red Hat SKB creation outside drivers: using metadata and HW-offloads?

- Jesper Dangaard Brouer <brouer@redhat.com>

17

mailto:brouer@redhat.com

End

Disclaimer

e These slides are only design ideas and suggestions
e Non of this is actually implemented

Main purpose was getting a discussion going
e which were hopefully successful...

Red Hat SKB creation outside drivers: using metadata and HW-offloads? - Jesper Dangaard Brouer <brouer@redhat.com>

18

mailto:brouer@redhat.com

Slides: Extra

Red Hat SKB creation outside drivers: using metadata and HW-offloads?

Jesper Dangaard Brouer <brouer@redhat.com>

19

mailto:brouer@redhat.com

Layout of xdp_frame

If layout needs to be discussed...

struct xdp_frame {

+s

void *
ule
uleé
uleé

struct xdp_mem_info
struct net _device *

Red Hat

SKB creation outside drivers: using metadata and HW-offloads?

Jesper Dangaard Brouer <brouer@redhat.com>

20

mailto:brouer@redhat.com

Layout of xdp_buff

If layout needs to be discussed...

struct xdp_buff {

+s

void *

void *

void *

void *

long unsigned int
struct xdp_rxg_info *

Red Hat

SKB creation outside drivers: using metadata and HW-offloads?

Jesper Dangaard Brouer <brouer@redhat.com>

21

mailto:brouer@redhat.com

