
Kernel upgrades

June 2019
Alexei Starovoitov
ast@kernel.org



We say "I work on the linux kernel". What does it mean?

• We add new features and fixing bugs.
• We want people to run the latest kernels.

• To find more bugs in our new features J
• To get feedback faster about new features.



No extensibility via kernel modules

• Long ago we made a strategic decision to make BPF not extensible via kernel modules.
• Companies contribute BPF helpers/features.
• Companies (datacenters who contributed new BPF feature) want new kernel version.
• Android wants new kernel version.

• Customers are pushing distro vendors to ship newer kernels,
• because they've heard good thing about BPF features.
• All of it is happening because new features require kernel upgrade.



Positive cycle

• We are happy, since our features and bug fixes get to users faster.
• Faster kernel upgrade cycle accelerates kernel development.
• Demand for faster development means more kernel developers.
• More developers -> more diversity -> healthier community -> better decisions.

• To maintain this positive cycle new features must be the core kernel.



No features in kernel modules

• New features must not be in the kernel modules.
• This rule applies to drivers too.
• Think what it will take to generalize your driver feature to be suitable for networking core 

and push it there. Even if your driver is the only user.

• It's ok for it to be rough. It will get generalized.



kernel/driver interface

• kernel<->driver interface was great 10 years ago.
• napi_gro_receive and ndo_start_xmit are not enough in the era of XDP, AF_XDP, ktls/tc

offloads.
• page alloc, skb alloc, xdp frame alloc should be in the core.

• The kernel is struggling to extend this driver interface, since new features are still part of 
the driver.

• NIC vendors need to have drivers for many kernel versions, hence little incentive to 
improve core.

• I propose Dave to reject patches that add features to drivers.



Backports are evil

• Backports bring new features to older kernel.
• Users lose an incentive to upgrade.
• It's harder for us (kernel developers) to fix bugs.
• Avoid backports. Upgrade kernels faster.



Scaling kernel development 
process

June 2019
Alexei Starovoitov
ast@kernel.org



Email is dying.



Email is dead. Long live Gmail.

• 'dynamic email' = integration with G suite. Feels like webpage.
• Delays will get longer.
• Kernel community has to try an alternative.



This alternative can be github.

• How many of you send pull-req on github ?
• How many of you merged pull-req ?



Step 1

• bi-directional sync of kernel.org/bpf-next and github/.../bpf-next
• Developers can choose both mechanisms to send patches.
• Doubles the work for myself and Daniel.
• No auto Acks in github.



Step 2

• github subscribes to bpf@vger and recognizes emails [PATCH bpf-next 0/N] and creates 
them as PR on github
• Makes it easy for maintainers to apply patches with single click.

• github sends emails to bpf@vger for PR submitted on github



Step 3

• github recognizes replies with Acked-by and discussion. Injects them into github ui.
• comments on github are sent as emails to bpf@vger



Win-win

• At this point developers and maintainers can send old school emails or use UI

• Further misc steps:
• merge of PR on github closes corresponding thread in patchworks

• close PRs on github when patches were pushed manually
• continuous integration with build bots on github


