

AF_XDP user experience

Jonathan Lemon
bsd@fb.com

• Focused on low latency, low overhead handling of packets.
• Can be viewed as linux alternative to DPDK.
• Drivers in kernel, filters in bpf, user allocated memory.
• Successor to AF_TPACKET v2, v3
• Limitations, AKA "benefits":

• intentional bypass of most kernel features

Review of AF_XDP
Exactly what the hell is this thing?

• QUIC, custom steering rules.
• High speed presence/counter updates.
• Prototype development.
• Load testing.

Use cases
Solution in search of a problem

• AF_XDP application would typically be main application,
but not the only thing running on the box, so it would need
to coexist with normal traffic.

• Would possibly be nice to allow multiple AF_XDP
applications; this would require multiple bpf filters for a
single netdev.

Details
 ... the devil is in there somewhere.

• Ease of use, understanding, deployment & configuration
• Queue configuration, bundling and specifications.
• Co-existence with normal traffic without penalties.
• Uniform behavior across drivers.

Issues
.. so is the fly in my soup.

Redirect traffic to a specific RSS context:

 ethtool -X eth0 context new 2
 ethtool -N eth0 flow-type udp6 dst-port 4242 context 2

Redirect traffic to a specific queue:

 ethtool -N eth0 flow-type udp6 dst-port 4242 action 30

Not working together.

RSS/classification separation

• Receive object is created
• Either by driver or by user, matching parameters

• Object is attached to context (RSS distributor)
• Contexts can be default, or created by user

• bpf redirects to context
• Substitute simple hardware filter in place of bpf to start.

 packets -> bpf -> distributor -> queues

Reasonable API available to user space.

Idealized experience

• Discussion on object management (RX, TX, NAPI)
• Creation, properties, referencing

• How these are bound to resources (device, cpu, irq, numa)
• Requests, query capabilities

• Automated lifetime (or part of object management)
• Reasonable unified API (for both user & kernel code)

Goals

• BTF type for xsk, simplifying xskmap lookup, eliminating
need for shadow map.

• reuseq stack in front of fill queue, for kernel pushback.
• zero-copy transmit for XDP_TX decision on RX path.

Small Improvements
... little by little

• Moar offloading (BPF in hardware?)
• Would AF_XDP sub-device be a better solution to these

problems?
• Ideally would be great to have NIC vendors to focus on

NIC features, not drivers.

Future Vision

