- redhat.

Spectres never die -

they turn into zombie

MDS performance impact, repolines and sparse
performance improvements

NetConf, Boston 2019




Outline

. ZombieLoad/MDS performance impact...
« ... but we are still catching-up with retpoline
« Other future possible misc performance improvements

Q redhat.



What is MDS (aka zombielLoad) after all?

. Just another bunch of x86 microarchitecture issues

. User space can speculatively access data into the store buffer, load
buffer, load port breaking the process or even guest boundaries

« Cross hyper-thread: with SMT-on complete mitigation is not
possible

. Mitigation: flush the affected buffer on context switch

Q redhat.



UDP RX performances

64 bytes ipv4 packets, single RX queue, different packet sizes

B MDS=off
B MDS=on

64 128 256 512 1024

Q redhat.



UDP TX performances

64 bytes ipv4 packets, single RX queue, different packet sizes

B MDS=off
B MDS=on

64 128 256 512 1024 1500

Q redhat.



TCP performances

Single flow stream workload

B MDSs=off
B MDS=on

bare-metal to bare-metal VM to bare-metal bare-metal to VM

Q redhat.



Still dealing with retpolines [1]

We avoid some indirect calls via the indirect call wrappers:

GRO

Part of the RX path
Part of the TX path
Other users: csum, ipvs

Q redhat.



Indirect call wrapper effects
Kernel 5.2.0-rct

TCP Mbps UDP Kpps

Q redhat.



Still dealing with retpolines [2]

Other possible INDIRECT_CALL_WRAPPER targets:

. Skb->destructor

. Sk_proto->{send,recv}imsg
o sock->ops->{send,recvimsqg duplication (ipv4 vs ipv6) needed?

Q redhat.



Indirect call pain-points

. Code uglification
. Un-addressable call-sites:

o ndo_start_xmit, ndo_select_queue, ... ?
« Device drivers:

o mIx5(!!!) had 2 indirect calls per packet in fast path (even XDP!!!)
o What about others NICs/vendors?

Q redhat.



Skb header recycle

. napi_gro_frags() allows recycle the whole skb on merge
« Most [hi-perf] drivers use napi_gro_receive()

We could do something similar there:

. recycle [merged] the sk_buff into the napi struct
. A new napi allocator tries to fetch the recycled sk_buff first
o Still need per driver patch

o can further optimize the recycling, clearing only the fields touched by
the GRO code and the driver

Q redhat.



Bulk skb header allocation/free

Once we have a napi skb hdr allocator in place we can additionally

. Bulk alloc skb headers when the cache is empty
. Allow dev_kfree_skb() to recycle skbs to the cache
. Bulk free skb headers when recycling exceeds the cache limit

Q. redhat.



Still messing with costly skbs

zeroing (almost) all skb after the allocation is costly, we can:

« Shrink the struct
. Move fields at the end, control validity with bits, ala ‘extensions’, for
less commonly used fields, e.q.
o _nfct (the ptr part), secmark, priority, vlan_{proto,tci},
inner_{}_header, inner_{protocol,ipproto}
o Will clear ‘only’ 3 CL per skb, instead of current 4

Q redhat.



Shrink skb again

Some possible candidates:

« Skb->truesize: 16 bits counter of 256b units, open points:
o loss of precision
o How to deal with ‘magic’ truesize values? (e.qg. tcp pure ack)
. skb->data: 32 bits offset vs head, with set and get helpers
o It’s a very invasive change

Q redhat.



Shrink skb again [Il]

« Skb->cb[]: resize it to 40 bytes, add cb2[] at end
o Requires some refactoring of current uses
o WiFidrivers can be a problem
« Limiting the max value of some common fields (skb_iif, mac_len,

...)

Q redhat.



- redhat.

THANK YOU



