
MDS performance impact, repolines and sparse 
performance improvements

NetConf, Boston 2019

Spectres never die - 
they turn into zombie



INSERT DESIGNATOR, IF NEEDED

Outline

2

● ZombieLoad/MDS performance impact...
● … but we are still catching-up with retpoline
● Other future possible misc performance improvements



INSERT DESIGNATOR, IF NEEDED

What is MDS (aka zombieLoad) after all?

3

● Just another bunch of x86 microarchitecture issues
● User space can speculatively access data into the store buffer, load 

buffer, load port breaking the process or even guest boundaries
● Cross hyper-thread: with SMT-on complete mitigation is not 

possible
● Mitigation: flush the affected buffer on context switch



INSERT DESIGNATOR, IF NEEDED4

UDP RX performances
64 bytes ipv4 packets, single RX queue, different packet sizes



INSERT DESIGNATOR, IF NEEDED5

UDP TX performances
64 bytes ipv4 packets, single RX queue, different packet sizes



INSERT DESIGNATOR, IF NEEDED6

TCP performances
Single flow stream workload



INSERT DESIGNATOR, IF NEEDED

Still dealing with retpolines [1]

7

We avoid some indirect calls via the indirect call wrappers:
● GRO
● Part of the RX path
● Part of the TX path
● Other users: csum, ipvs 



INSERT DESIGNATOR, IF NEEDED8

Indirect call wrapper effects
Kernel 5.2.0-rc1



INSERT DESIGNATOR, IF NEEDED

Still dealing with retpolines [2]

9

Other possible INDIRECT_CALL_WRAPPER targets:
● skb->destructor
● sk_proto->{send,recv}msg

○ sock->ops->{send,recv}msg duplication (ipv4 vs ipv6) needed?



INSERT DESIGNATOR, IF NEEDED

Indirect call pain-points

10

● Code uglification 
● Un-addressable call-sites:

○ ndo_start_xmit, ndo_select_queue, … ?
● Device drivers:

○ mlx5(!!!) had 2 indirect calls per packet in fast path (even XDP!!!)
○ What about others NICs/vendors?



INSERT DESIGNATOR, IF NEEDED

Skb header recycle

11

● napi_gro_frags() allows recycle the whole skb on merge
● Most [hi-perf] drivers use napi_gro_receive()

We could do something similar there:
● recycle [merged] the sk_buff into the napi struct
● A new napi allocator tries to fetch the recycled sk_buff first

○ Still need per driver patch
○ can further optimize the recycling, clearing only the fields touched by 

the GRO code and the driver



INSERT DESIGNATOR, IF NEEDED

Bulk skb header allocation/free

12

Once we have a napi skb hdr allocator in place we can additionally
● Bulk alloc skb headers when the cache is empty
● Allow dev_kfree_skb() to recycle skbs to the cache
● Bulk free skb headers when recycling exceeds the cache limit



INSERT DESIGNATOR, IF NEEDED

zeroing (almost) all skb after the allocation is costly, we can:
● Shrink the struct
● Move fields at the end, control validity with bits, ala ‘extensions’, for 

less commonly used fields, e.g.
○ _nfct (the ptr part), secmark, priority, vlan_{proto,tci}, 

inner_{}_header, inner_{protocol,ipproto}
○ Will clear ‘only’ 3 CL per skb, instead of current 4

Still messing with costly skbs

13



INSERT DESIGNATOR, IF NEEDED

Some possible candidates:
● skb->truesize: 16 bits counter of 256b units, open points:

○ loss of precision
○ How to deal with ‘magic’ truesize values? (e.g. tcp pure ack)

● skb->data: 32 bits offset vs head, with set and get helpers
○ It’s a very invasive change 

Shrink skb again

14



INSERT DESIGNATOR, IF NEEDED

● skb->cb[]: resize it to 40 bytes, add cb2[] at end
○ Requires some refactoring of current uses
○ WiFi drivers can be a problem

● Limiting the max value of some common fields (skb_iif, mac_len, 
…)

Shrink skb again [II]

15



THANK YOU


