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Spectres never die - 
they turn into zombie



INSERT DESIGNATOR, IF NEEDED

Outline
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● ZombieLoad/MDS performance impact...
● … but we are still catching-up with retpoline
● Other future possible misc performance improvements
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What is MDS (aka zombieLoad) after all?
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● Just another bunch of x86 microarchitecture issues
● User space can speculatively access data into the store buffer, load 

buffer, load port breaking the process or even guest boundaries
● Cross hyper-thread: with SMT-on complete mitigation is not 

possible
● Mitigation: flush the affected buffer on context switch
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UDP RX performances
64 bytes ipv4 packets, single RX queue, different packet sizes
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UDP TX performances
64 bytes ipv4 packets, single RX queue, different packet sizes
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TCP performances
Single flow stream workload
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Still dealing with retpolines [1]
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We avoid some indirect calls via the indirect call wrappers:
● GRO
● Part of the RX path
● Part of the TX path
● Other users: csum, ipvs 
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Indirect call wrapper effects
Kernel 5.2.0-rc1
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Still dealing with retpolines [2]
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Other possible INDIRECT_CALL_WRAPPER targets:
● skb->destructor
● sk_proto->{send,recv}msg

○ sock->ops->{send,recv}msg duplication (ipv4 vs ipv6) needed?
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Indirect call pain-points

10

● Code uglification 
● Un-addressable call-sites:

○ ndo_start_xmit, ndo_select_queue, … ?
● Device drivers:

○ mlx5(!!!) had 2 indirect calls per packet in fast path (even XDP!!!)
○ What about others NICs/vendors?
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Skb header recycle
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● napi_gro_frags() allows recycle the whole skb on merge
● Most [hi-perf] drivers use napi_gro_receive()

We could do something similar there:
● recycle [merged] the sk_buff into the napi struct
● A new napi allocator tries to fetch the recycled sk_buff first

○ Still need per driver patch
○ can further optimize the recycling, clearing only the fields touched by 

the GRO code and the driver
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Bulk skb header allocation/free

12

Once we have a napi skb hdr allocator in place we can additionally
● Bulk alloc skb headers when the cache is empty
● Allow dev_kfree_skb() to recycle skbs to the cache
● Bulk free skb headers when recycling exceeds the cache limit
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zeroing (almost) all skb after the allocation is costly, we can:
● Shrink the struct
● Move fields at the end, control validity with bits, ala ‘extensions’, for 

less commonly used fields, e.g.
○ _nfct (the ptr part), secmark, priority, vlan_{proto,tci}, 

inner_{}_header, inner_{protocol,ipproto}
○ Will clear ‘only’ 3 CL per skb, instead of current 4

Still messing with costly skbs
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Some possible candidates:
● skb->truesize: 16 bits counter of 256b units, open points:

○ loss of precision
○ How to deal with ‘magic’ truesize values? (e.g. tcp pure ack)

● skb->data: 32 bits offset vs head, with set and get helpers
○ It’s a very invasive change 

Shrink skb again
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● skb->cb[]: resize it to 40 bytes, add cb2[] at end
○ Requires some refactoring of current uses
○ WiFi drivers can be a problem

● Limiting the max value of some common fields (skb_iif, mac_len, 
…)

Shrink skb again [II]
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THANK YOU


