
NetConf, Boston 2019

MPTCP is coming

INSERT DESIGNATOR, IF NEEDED

Outline

2

● Why MPTCP ?
○ Why does it take so long?

● Current status and implementation
○ Skb extensions, ULP, inet/tcp diag

● Roadmap, current work
○ MP_JOIN, upstream by the end of the year?
○ Future work

INSERT DESIGNATOR, IF NEEDED3

Why MPTCP?
Two main use cases

● Keep logical connection established when endpoints address changes
● Use multiple links, e.g. cable and 5G, at same time for same connection

The latter usually comes with MPTCP Proxy scheme, terminated at local provider/DC

Focus on a limited feature set for initial upstreaming:

● Server use case
● Performance optimizations are deferred
● Path manager and scheduler customization are deferred

INSERT DESIGNATOR, IF NEEDED

Current Status
Highlevel overview

● “Mptcp-next” kernel
○ Complete rewrite, not related to the out of tree implementation from

multipath-tcp.org
○ targets upstream inclusion
○ Growing development team: Intel, Tessares, Redhat

● bool CONFIG_MPTCP switch
○ No code change when MPTCP=n

● Can create mptcp connections via SOCK_STREAM and IPPROTO_MPTCP
● MP_JOIN support WIP, i.e. only single flow (with DSS mapping)
● Small mptcp selftest script that is being extended as we cover more use cases
● Parallel effort to “de-feature” existing out-of-tree implementation

INSERT DESIGNATOR, IF NEEDED

Current status
Implementation: Architectural overview

● MPTCP meta socket
○ Gets created on behalf of userspace via socket(), accept() etc.
○ Contains the mptcp relevant parts (e.g. logical sequence numbers, subflows (tcp

sockets, and so on)
● Subflows (tcp sockets) are stored in a list via meta socket
● ULP plumbs tcp sockets to the mptcp (parent) socket (back pointer)
● Userspace does not interact with the subflow connections directly
● RFC patches with current snapshot were sent to net-next last monday

○ Verify that the current direction is sane
● By the end of the year:

○ DATA_FIN, MP_JOIN/active-backup support (server side)
○ Official net-next submission

INSERT DESIGNATOR, IF NEEDED

diffstat

 net/core/skbuff.c | 7

 net/ipv4/inet_connection_sock.c | 2

 net/ipv4/tcp.c | 4 +-

 net/ipv4/tcp_input.c | 25 +-

 net/ipv4/tcp_ipv4.c | 4 +-

 net/ipv4/tcp_output.c | 62 +-

 net/ipv4/tcp_ulp.c | 12 +

 net/mptcp/crypto.c | 206 ++++

 net/mptcp/options.c | 621 ++++++++++

 net/mptcp/pm.c | 66 ++

 net/mptcp/protocol.c | 1043 +++++++++++++++++++++

 net/mptcp/protocol.h | 229 ++++

 net/mptcp/subflow.c | 344 ++++++

 net/mptcp/token.c | 373 ++++

 32 files changed, 3955 insertions(+), 8 deletions(-)

INSERT DESIGNATOR, IF NEEDED

Main data structures (1)
Mptcp socket structure

struct mptcp_sock {

 /* inet_connection_sock must be the first member */

 struct inet_connection_sock sk;

 u64 local_key, remote_key, write_seq, ack_seq;

 struct list_head conn_list;

 struct socket *subflow; // outgoingconnect/listener/!mp_capable

};

This is what gets created on “socket(... , IPPROTO_MPTCP)” (IPPROTO_MPTCP == 262)

Used to store keys (to authenticate subflows), sequence numbers, and a list of active subflows.

INSERT DESIGNATOR, IF NEEDED

Main data structures (2)
subflow/mptcp socket plumbing

struct subflow_context {

 struct list_head node;/* conn_list of subflows */

 [..]

 u16 request_mptcp : 1, /* send MP_CAPABLE */

 request_cksum : 1, [..]

 struct socket *tcp_sock; /* underlying tcp_sock */

 struct sock *conn; /* parent mptcp_sock */

 void (*tcp_sk_data_ready)(struct sock *sk);

};

This gets stored in tcp sockets icsk->icsk_ulp_data for all tcp connections that are created on behalf
of mptcp.

INSERT DESIGNATOR, IF NEEDED

MPTCP -> subflow association
Responder/server side

● socket(STREAM, MPTCP), then listen/bind
○ mptcp_bind() creates an internal tcp socket and adds ULP::

sock_create_kern(net, .., IPPROTO_TCP, &sock)

tcp_set_ulp(sock->sk, "mptcp")

ULP initialization sets icsk->icsk_af_ops to a subflow specific variant and calls
inet_bind on the tcp socket.

● accept():
○ mptcp_accept() calls kernel_accept() on the underlying tcp listening socket
○ can then associate the tcp flow with existing mptcp socket (wip), or create a

new mptcp socket (containing the newly accepted tcp subflow).

INSERT DESIGNATOR, IF NEEDED

MPTCP -> subflow association
Initiator side

● socket(,.. MPTCP), connect()
○ Socket creates the mptcp meta socket
○ The tcp socket gets created on connect() call
○ ULP gets added to it so we can link back to mptcp socket from tcp socket

● association as a subflow occurs via mptcp
inet_connection_sock_af_ops.sk_rx_dst_set.

● new subflow gets added to MPTCP socket conn_list after it is established.

INSERT DESIGNATOR, IF NEEDED

Ongoing work (1)

ULP extensions
● Improve MPTCP diagnostics, e.g. show which tcp flows are part of same logical

MPTCP “connection” via tcp diag (ss tool)
○ See Davide Caratti’s work: “extend INET_DIAG_INFO with information

specific to TCP ULP”
● independent/decoupled from MPTCP: kTLS as first user, so MPTCP can make use

of this ULP diag too

INSERT DESIGNATOR, IF NEEDED

Ongoing work (2)
MP_JOIN support

● Allow incoming new connection to be associated with existing (logical) connection in
transparent way in case it provides mptcp token

● Additional subflows will not be used for data transfer initially (“backup path”) to simplify
implementation
○ Will still need to be able to receive data on such tcp subflows
○ But avoids need for full traffic scheduler
○ No need for logical congestion control (if that is needed at all)

INSERT DESIGNATOR, IF NEEDED

Ongoing work (3)
DATA_FIN support

● Similar to fin in standard tcp, except will close down the logical mptcp connection
○ Typically triggered in response to close()

● Sets a flag in DSS option, i.e. signalled via tcp option on the subflow

INSERT DESIGNATOR, IF NEEDED

Ongoing work (4)
Socket state update

● MPTCP sk_socket state doesn’t reflect logical state at the moment, is just syn/established/close
● mptcp socket state is unrelated from subflow states

○ Could even have connected mptcp socket with no established subflow
○ Plan is to re-use tcp states for mptcp

INSERT DESIGNATOR, IF NEEDED

Future work (1):

● Ipv6 support
○ Current implementation directly calls some tcp ipv4 functions
○ Be32 used for addr storage/in function prototypes
○ No known blockers wrt. Ipv6 at this time

● Coupled receive windows
○ Receive window is no longer per subflow, it indicates buffer space for whole logical

connection
○ Its therefore relative to MPTCP DATA_ACK, not subflow acks
○ Given middlebox interference, receivers need to be liberal (use largest value seen on a

subflow)

INSERT DESIGNATOR, IF NEEDED

Future work (2):

path/subflow management
● peers announce additional addresses/ports in tcp option

○ From RFC/protocol pov, responder could even connect to initiator
○ In “initiator connections to alternate address announced by server” case: kernel might

lack proper info to make such decision (e.g. because alternate path is slow, or not
desirable for other reasons)

● Out-of-tree implementation offers different “path managers”
○ similar to tcp congestion control plugins
○ E.g. “full-mesh”: “try to establish everything”
○ most interesting one at this time: netlink based

■ Uses Genl multicast to inform userspace about coming/going peers
■ Userspace can add/remove addresses, perform joins, etc.

INSERT DESIGNATOR, IF NEEDED

Future work (3):

Testing
● Current mptcp kselftest is not enough

○ Limited by the feature set available
○ Can’t test MP_JOIN itself, since we will only do it passively initially
○ Needs “manual” testing vs. out-of-tree MPTCP implementation

● Mptcp packetdrill: https://github.com/multipath-tcp/packetdrill_mptcp
● Syscall level testing is non-existent

https://github.com/multipath-tcp/packetdrill_mptcp

INSERT DESIGNATOR, IF NEEDED

Future work (4):

MPTCP UAPI
● RFC 6897 - Multipath TCP (MPTCP) Application Interface Considerations
● No changes at this time (except need to pass IPPROTO_MPTCP in socket(2))

○ Reusing sctp api? (connectx and friends)
○ Need to plumb highlevel set/getsockopts to subflows (e.g. SO_RCVBUF, PRIORITY,

NONBLOCK, etc).
■ “Replay” on later JOIN

● RFC requires getpeername/getsockname to not change during lifetime of MPTCP connection
○ Even if the initial subflow was already closed
○ Even allows to close entire MPTCP connection in that case (Fate-Sharing)

● Lack of MPTCP availability in most servers/clients - little to no real operational experience

THANK YOU

INSERT DESIGNATOR, IF NEEDED

RFCs

● RFC 6182 - Architectural Guidelines for Multipath TCP Development
● RFC 6824 - TCP Extensions for Multipath Operation with Multiple Addresses

○ This describes the protocol/on-wire details
○ Some hints and considerations (heuristics) for subflow establishment decisions in 3.8

(heuristics).
● RFC 6897 - Multipath TCP (MPTCP) Application Interface Considerations

○ get/setsockopt interface

