
Performance impacts of spectre/meltdown
counter-measures and possible improvements
Paolo Abeni - Red Hat

NetConf, Boston 2018

Who fears the spectres?

INSERT DESIGNATOR, IF NEEDED

Outline

2

● Performance impact of PTI and retpoline on current net-next
● Possible improvements, PTI and retpoline-related
● Possible improvements, misc

INSERT DESIGNATOR, IF NEEDED3

UDP RX performances
64 bytes ipv4 packets, single sink, different RX queues

INSERT DESIGNATOR, IF NEEDED

Digging with perf
Topmost perf offenders for UDP RX test - receiver process, compared

PTI only

13.49% syscall_return_via_sysret

10.49% 0xfffffe000016601b

 7.11% copy_user_generic_unrolled

 6.40% udp_recvmsg

 4.15% page_frag_free

 3.72% __sys_recvfrom

 3.61% do_syscall_64

 3.46% __slab_free

 3.18% entry_SYSCALL_64_after_hwframe

NO mitigations

11.41% copy_user_generic_unrolled

9.12% udp_recvmsg

5.25% __slab_free

5.20% page_frag_free

4.55% __sys_recvfrom

4.38% entry_SYSCALL_64_after_hwframe

4.08% do_syscall_64

4.04% avc_has_perm

3.75% _copy_to_iter

Retpoline only

10.95% udp_recvmsg (delta 2.73%)

7.72% copy_user_generic_unrolled

6.40% avc_has_perm (delta 2.36%)

5.51% page_frag_free

5.12% __sys_recvfrom

4.35% __slab_free

4.07% __skb_recv_udp (delta ~1.54%)

3.93% entry_SYSCALL_64_after_hwframe

3.40% do_syscall_64

INSERT DESIGNATOR, IF NEEDED5

QDisc performances
pktgen tput with queue_xmit mode, 64 bytes packets

INSERT DESIGNATOR, IF NEEDED

Perf, again
Topmost perf offenders for Qdisc test, compared

NO mitigations

11.86% pktgen_xmit

9.27% ixgbe_xmit_frame_ring

8.71% skb_unref.part.39

6.76% pfifo_fast_dequeue

5.81% ip_send_check

 3.82% __dev_queue_xmit

 3.58% mod_cur_headers

 3.29% __qdisc_run

 3.15% skb_put

Retpoline only

11.41% ixgbe_xmit_frame_ring (delta 2.14%)

10.42%pktgen_xmit

10.34% pfifo_fast_dequeue (delta 3.62%)

 4.98% ip_send_check

 4.74% skb_unref.part.39

 3.50% __qdisc_run

 3.33% __dev_queue_xmit

 2.97% mod_cur_headers

 2.60% __build_skb

INSERT DESIGNATOR, IF NEEDED7

PVP performances
OVS kernel datapath, default flow configuration

INSERT DESIGNATOR, IF NEEDED

One last perf comparison
Topmost perf offenders for PVP test - vhost process - compared

PTI only

5.64% vhost_get_vq_desc

5.18% tun_get_user

5.08% masked_flow_lookup

4.63% copy_user_generic_unrolled

4.57% translate_desc

3.92% iov_iter_advance

3.41% ixgbe_xmit_frame_ring

3.24% pfifo_fast_dequeue

NO mitigations

5.78% vhost_get_vq_desc

5.47% tun_get_user

5.37% masked_flow_lookup

5.05% copy_user_generic_unrolled

4.62% translate_desc

4.01% iov_iter_advance

3.54% ixgbe_xmit_frame_ring

2.73% pfifo_fast_dequeue

Retpoline only

5.29% tun_get_user

5.06% vhost_get_vq_desc

4.77% masked_flow_lookup

4.65% ixgbe_xmit_frame_ring (delta 1.11%)

4.20% pfifo_fast_dequeue (delta 1.47%)

4.20% copy_user_generic_unrolled

4.04% translate_desc

3.76% iov_iter_advance

INSERT DESIGNATOR, IF NEEDED

Fighting spectres

9

● Bulking:
○ Potentially reduces the impact of both retpolines and PTI

■ But really affecting retpolines is usually less straight-forward -
e.g. bulk_dequeue

○ Already there in several places (GSO, GRO, qdisc dequeue)
■ but routing and forwarding have no support

○ UDP is in a mixed state: GSO (and eventually GRO) for connected
sockets, recvmmsg/sendmmsg for unconnected (?!?)

○ other options?

INSERT DESIGNATOR, IF NEEDED

Still fighting spectres

10

might as well [not indirect] jump - indirect calls we can avoids

skb->destruct()
● Proposed by Hannes Sowa, originally to reduce skbuff size
● Use integer to demux the destruction action between the known

ones
○ Some driver - chelsio - may still need indirect call
○ The expected gain is currently unknown

INSERT DESIGNATOR, IF NEEDED

Indirect calls we want to avoid [II]

11

sch->enqueue and sch->dequeue
● We can check for build-in qdiscs and call the related ops directly,

○ We can avoid 2 indirect calls per packet
○ Still need them in some (most ?!?) cases

● With jump labels we can avoid all the indirect calls with the default
configuration

○ And fall back to the above after any changes

INSERT DESIGNATOR, IF NEEDED

More indirect calls we want to avoid

12

GRO and offloads
● A Lot of indirect calls per packet there
● At least for GRO removing all of them looks possible

○ But some code uglification looks unavoidable

Other targets?

INSERT DESIGNATOR, IF NEEDED

Side-track: too many [virtual-]switches

13

● 2 in kernel datapaths for OVS (net/openvswitch and TC/flower)
● neither is near to the requested performances (for SDN)

○ But even bypass solutions do not meet pkt rate requirements
● TC/flower is needed for H/W offload

○ But it still misses some features
● Do we need both of them? Can we move towards TC/flower only?
● Crazy idea: can we attach TC ingress to the XDP hook?

INSERT DESIGNATOR, IF NEEDED

And now for something completely
different

14

● Leverage UMH to implement COMPAT_ code for xfrm, and remove
compat kernel support from xtables (idea from Florian Westphal)

● Remote skb free (idea from Eric)
○ Any more details here?

● edmux for unconnected sockets (is that a dead cow?)

INSERT DESIGNATOR, IF NEEDED

the hardships of an orphan[ed skb]

15

And now for something completely different - part II

● SKBs are orphaned the xmit path, when potentially crossing net-ns
● In presence of XPS this hurts TCP performance badly (due to OoO

and lack of feedback towards the sender socket)
● Naive partial solution: disable XPS for orphaned sockets

○ Hurts UDP performances, don’t solve lack of feedback
● Alternative solution: access skb->sk via an helper in netfilter, do

not really clear skb->sk while scrubbing the skb, just mark is as not
accessible (via the helper)

THANK YOU

