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Who fears the spectres?



INSERT DESIGNATOR, IF NEEDED

Outline
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● Performance impact of PTI and retpoline on current net-next
● Possible improvements, PTI and retpoline-related
● Possible improvements, misc
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UDP RX performances
64 bytes ipv4 packets, single sink, different RX queues
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Digging with perf
Topmost perf offenders for UDP RX test - receiver process, compared

PTI only

13.49%  syscall_return_via_sysret

10.49%  0xfffffe000016601b

 7.11%  copy_user_generic_unrolled

 6.40% udp_recvmsg

 4.15%  page_frag_free

 3.72%  __sys_recvfrom

 3.61%  do_syscall_64

 3.46%  __slab_free

 3.18%  entry_SYSCALL_64_after_hwframe

 

NO mitigations

11.41%  copy_user_generic_unrolled

9.12% udp_recvmsg

5.25%  __slab_free

5.20%  page_frag_free

4.55%  __sys_recvfrom

4.38%  entry_SYSCALL_64_after_hwframe

4.08%  do_syscall_64

4.04%  avc_has_perm

3.75%  _copy_to_iter

Retpoline only

10.95%  udp_recvmsg (delta 2.73%)

7.72% copy_user_generic_unrolled

6.40%  avc_has_perm (delta  2.36%)

5.51%  page_frag_free

5.12%  __sys_recvfrom

4.35%  __slab_free

4.07%  __skb_recv_udp (delta ~1.54%)

3.93%  entry_SYSCALL_64_after_hwframe

3.40% do_syscall_64
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QDisc performances
pktgen tput with queue_xmit mode, 64 bytes packets
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Perf, again
Topmost perf offenders for Qdisc test, compared

NO mitigations

11.86%  pktgen_xmit

9.27%  ixgbe_xmit_frame_ring

8.71%  skb_unref.part.39

6.76%  pfifo_fast_dequeue

5.81%  ip_send_check

 3.82%  __dev_queue_xmit

 3.58%  mod_cur_headers

 3.29%  __qdisc_run

 3.15%  skb_put

Retpoline only

11.41%  ixgbe_xmit_frame_ring (delta 2.14%)

10.42%pktgen_xmit

10.34% pfifo_fast_dequeue (delta 3.62%)

 4.98% ip_send_check

 4.74%  skb_unref.part.39

 3.50%  __qdisc_run

 3.33%  __dev_queue_xmit

 2.97%  mod_cur_headers

 2.60%  __build_skb
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PVP performances
OVS kernel datapath, default flow configuration
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One last perf comparison
Topmost perf offenders for PVP test - vhost process - compared

PTI only

5.64%  vhost_get_vq_desc

5.18% tun_get_user

5.08% masked_flow_lookup

4.63% copy_user_generic_unrolled

4.57%  translate_desc

3.92%  iov_iter_advance

3.41%  ixgbe_xmit_frame_ring

3.24% pfifo_fast_dequeue

 

NO mitigations

5.78%  vhost_get_vq_desc

5.47%  tun_get_user

5.37%  masked_flow_lookup

5.05%  copy_user_generic_unrolled

4.62%  translate_desc

4.01%  iov_iter_advance

3.54% ixgbe_xmit_frame_ring

2.73% pfifo_fast_dequeue

 

Retpoline only

5.29%  tun_get_user

5.06%  vhost_get_vq_desc

4.77%  masked_flow_lookup

4.65%  ixgbe_xmit_frame_ring (delta 1.11%)

4.20%  pfifo_fast_dequeue (delta 1.47%)

4.20%  copy_user_generic_unrolled

4.04%  translate_desc

3.76%  iov_iter_advance
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Fighting spectres
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● Bulking: 
○ Potentially reduces the impact of both retpolines and PTI

■ But really affecting retpolines is usually less straight-forward - 
e.g. bulk_dequeue

○ Already there in several places (GSO, GRO, qdisc dequeue)
■ but routing and forwarding have no support

○ UDP is in a mixed state: GSO (and eventually GRO) for connected 
sockets, recvmmsg/sendmmsg for unconnected (?!?)

○ other options?
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Still fighting spectres
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might as well [not indirect] jump - indirect calls we can avoids

skb->destruct()
● Proposed by Hannes Sowa, originally to reduce skbuff size
● Use integer to demux the destruction action between the known 

ones
○ Some driver - chelsio - may still need indirect call
○ The expected gain is currently unknown
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Indirect calls we want to avoid [II]
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sch->enqueue and sch->dequeue
● We can check for build-in qdiscs and call the related ops directly,

○ We can avoid 2 indirect calls per packet
○ Still need them in some (most ?!?) cases

● With jump labels we can avoid all the indirect calls with the default 
configuration

○ And fall back to the above after any changes
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More indirect calls we want to avoid
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GRO and offloads
● A Lot of indirect calls per packet there
● At least for GRO removing all of them looks possible

○ But some code uglification looks unavoidable

Other targets?
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Side-track: too many [virtual-]switches
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● 2 in kernel datapaths for OVS (net/openvswitch and TC/flower)
● neither is near to the requested performances (for SDN)

○ But even bypass solutions do not meet pkt rate requirements
● TC/flower is needed for H/W offload

○ But it still misses some features
● Do we need both of them? Can we move towards TC/flower only?
● Crazy idea: can we attach TC ingress to the XDP hook?
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And now for something completely 
different
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● Leverage UMH to implement COMPAT_ code for xfrm, and remove 
compat kernel support from xtables (idea from Florian Westphal)

● Remote skb free (idea from Eric)
○ Any more details here?

● edmux for unconnected sockets (is that a dead cow?)
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the hardships of an orphan[ed skb]
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And now for something completely different - part II

● SKBs are orphaned the xmit path, when potentially crossing net-ns
● In presence of XPS this hurts TCP performance badly (due to OoO 

and lack of feedback towards the sender socket)
● Naive partial solution: disable XPS for orphaned sockets

○ Hurts UDP performances, don’t solve lack of feedback
● Alternative solution: access skb->sk via an helper in netfilter, do 

not really clear skb->sk while scrubbing the skb, just mark is as not 
accessible (via the helper)



THANK YOU


