- redhat.

Who fears the spectres?

Performance impacts of spectre/meltdown
counter-measures and possible improvements

Paolo Abeni - Red Hat

NetConf, Boston 2018




Outline

. Performance impact of PTIl and retpoline on current net-next
« Possible improvements, PTIl and retpoline-related
« Possible improvements, misc

Q redhat.



UDP RX performances

64 bytes ipv4 packets, single sink, different RX queues

retpoline
B PTI +retpoline

Q redhat.



Digging with perf

Topmost perf offenders for UDP RX test - receiver process, compared

NO mitigations

1.41%

copy_user_generic_unrolled

9.12% udp_recvmsg

5.25%

5.20%

4.55%

4.38%

4.08%

4.04%

3.75%

__slab_free

page_frag_free

__sys_recvfrom
entry_SYSCALL_64_after_hwframe
do_syscall_64

avc_has_perm

_copy_to_iter

Retpoline only

10.95% udp_recvmsg (delta 2.73%)

7.72% copy_user_generic_unrolled

6.40% avc_has_perm (delta 2.36%)
5.51% page_frag_free

5.12% __sys_recvfrom

4.35% __slab_free

4.07% __skb_recv_udp (delta ~1.54%)
3.93% entry_SYSCALL_64_after_hwframe

3.40% do_syscall_64

PTl only

13.49% syscall_return_via_sysret
10.49% DRiSOO0OISE0HE

7.11% copy_user_generic_unrolled
6.40% udp_recvmsg

4.15% page_frag_free

3.72% __sys_recvfrom

3.61% do_syscall_64

3.46% __slab_free

3.18% entry_SYSCALL_64_after_hwframe

Q redhat.



QDisc performances
pktgen tput with queue_xmit mode, 64 bytes packets

default 1 thread 1tx queue 1 thread 1 tx queue 8 thread

Q redhat.



Perf, again

Topmost perf offenders for Qdisc test, compared

NO mitigations

11.86% pktgen_xmit

9.27% ixgbe_xmit_frame_ring

8.71% skb_unref.part.39
6.76% pfifo_fast_dequeue
5.81% ip_send_check
3.82% __dev_queue_xmit
3.58% mod_cur_headers
3.29% __qgdisc_run

3.15% skb_put

Retpoline only

11.41% ixgbe_xmit_frame_ring (delta 2.14%)

10.42%pktgen_xmit

10.34% pfifo_fast_dequeue (delta 3.62%)

4.98% ip_send_check
4.74% skb_unref.part.39
3.50% __qdisc_run
3.33% __dev_queue_xmit
2.97% mod_cur_headers

2.60% __build_skb

Q redhat.



PVP performances
OVS kernel datapath, default flow configuration

retpoline

Q redhat.



One last perf comparison

Topmost perf offenders for PVP test - vhost process - compared

NO mitigations Retpoline only PTl only

5.78% vhost_get_vq_desc 5.29% tun_get_user 5.64% vhost_get_vq_desc

5.47% tun_get_user 5.06% vhost_get_vqg_desc 5.18% tun_get_user

5.37% masked_flow_lookup 4.77% masked_flow_lookup 5.08% masked_flow_lookup
5.05% copy_user_generic_unrolled 4.65% ixgbe_xmit_frame_ring (delta 1.11%) 4.63% copy_user_generic_unrolled
. (] . i il

4.62% translate desc 4.20% pfifo_fast_dequeue (delta 1.47%) 4.57% translate_desc

4.01% iov iter advance 4.20% copy_user_generic_unrolled 3.92% iov_iter_advance

3.54% ixgbe_xmit_frame_ring b EslEle gl 3.41% ixgbe_xmit_frame_ring

3.76% iov_iter_advance 3.24% pfifo_fast_dequeue

2.73% pfifo_fast_dequeue

Q redhat.



Fighting spectres

. Bulking:
o Potentially reduces the impact of both retpolines and PTI
« But really affecting retpolines is usually less straight-forward -
e.qg. bulk_dequeue
o Already there in several places (GSO, GRO, qdisc dequeue)
« but routing and forwarding have no support
o UDPisin a mixed state: GSO (and eventually GRO) for connected
sockets, recvmmsg/sendmmsg for unconnected (?!?)
o other options?

Q redhat.



Still fighting spectres

might as well [not indirect] jump - indirect calls we can avoids

skb->destruct()

. Proposed by Hannes Sowa, originally to reduce skbuff size

. Useinteger to demux the destruction action between the known
ones

o Some driver - chelsio - may still need indirect call
o The expected gain is currently unknown

Q redhat.



Indirect calls we want to avoid [II]

sch->enqueue and sch->dequeue

. We can check for build-in gdiscs and call the related ops directly,
o We can avoid 2 indirect calls per packet
o Still need them in some (most ?!?) cases

. With jump labels we can avoid all the indirect calls with the default
configuration
o And fall back to the above after any changes

Q redhat.



12

More indirect calls we want to avoid

GRO and offloads

. A Lot of indirect calls per packet there

« Atleast for GRO removing all of them looks possible
o But some code uglification looks unavoidable

Other targets?

Q redhat.



13

Side-track: too many [virtual-]switches

. 2in kernel datapaths for OVS (net/openvswitch and TC/flower)

. neitheris near to the requested performances (for SDN)
o But even bypass solutions do not meet pkt rate requirements
. T1C/floweris needed for H/W offload
o But it still misses some features
« Do we need both of them? Can we move towards TC/flower only?

« Crazyidea: can we attach TC ingress to the XDP hook?

Q redhat.



14

And now for something completely
different

. Leverage UMH to implement COMPAT_ code for xfrm, and remove
compat kernel support from xtables (idea from Florian Westphal)

« Remote skb free (idea from Eric)
o Any more details here?
. edmux for unconnected sockets (is that a dead cow?)

Q redhat.



15

the hardships of an orphan[ed skb]

And now for something completely different - part Il

- SKBs are orphaned the xmit path, when potentially crossing net-ns

« In presence of XPS this hurts TCP performance badly (due to 000
and lack of feedback towards the sender socket)

- Naive partial solution: disable XPS for orphaned sockets

o Hurts UDP performances, don’t solve lack of feedback

. Alternative solution: access skb->sk via an helper in netfilter, do
not really clear skb->sk while scrubbing the skb, just mark is as not
accessible (via the helper)

Q redhat.



- redhat.

THANK YOU



