
Layer 1 boring stuf
and less Layer 1 yet
still boring stuf

Florian Fainelli <f.fainelli@gmail.com>

mailto:f.fainelli@gmail.com

PHY testing
● Electrical testing:

– Cable: short/open pairs, distance
– Voltage/waveforms measurements
– Typically disruptive to the link state

● Requirements:
– Must run for an undefned amount of time
– Must communicate the disruption to the user clearly
– Future proof interface (as much as possible)
– Might have input/output data

PHY testing
● Initial candidates:

– IEEE compliance tests: waveforms, no I/O data
– Cable diagnostics: Output data
– Packet generator/tester: Input data

● None of this are killer features, yet it’s important
for lots of product manufacturers

PHY testing
● ETH_SS_PHY_TEST:

– String set of supported PHY test modes

● ETHTOOL_GPHYTEST:
– Obtain PHY specifc test (with optional data) results

● ETHTOOL_SPHYTEST:
– Enter PHY specifc test (with optional data)

PHY testing
● New ethtool_test_fags:

– ETH_TEST_FL_DONE: test is completed (success)
– ETH_TEST_FL_START: request test start
– ETH_TEST_FL_STOP request test stop
– ETH_TEST_FL_RUNNING: test is running/in progress

PHY testing
struct ethtool_phy_test {

 __u32 cmd;

 __u32 fags;

 __u32 mode;

 __u32 len;

 union {

 __u8 data[0];

 } test_data;

};

PHY testing
● In kernel API:

– int (*get_phy_test_len)(struct net_device *,
– struct ethtool_phy_test *);
– int (*get_phy_test)(struct net_device *,
– struct ethtool_phy_test *, u8 *);
– int (*set_phy_test)(struct net_device *,
– struct ethtool_phy_test *,
– const u8 *);

PHY testing
● User: Enter a test mode:

– Set appropriate mode value
– Set ETH_TEST_FL_START

● Kernel:
– Verifes parameters
– Calls appropriate PHY driver function
– Set net_device::operstate = IF_OPER_TESTING

● Success:
– Set ETH_TEST_FL_RUNNING/DONE

● Failure:
– Set ETH_TEST_FL_FAILED
– Reset PHY and restart PHY state machine

PHY testing
● User: exit a test mode

– Set appropriate mode value
– Set ETH_TEST_FL_STOP

● Kernel:
– Verifes parameters
– Calls appropriate PHY driver function
– Clears ETH_TEST_FL_{DONE,RUNNING,START}
– Resets PHY and restarts state machine

● (implicitly sets net_device::operstate to a correct value)

PHY testing
● Open questions:

– Generalize in-kernel API?
● get_test_len(net_device *, u32 stringset, union { })

– ethtool → netlink timeframe?
– Less structured data?

● NL80211_CMD_TESTMODE + NL80211_ATTR_TESTDATA?

PHYLINK
● Abstraction interface between:

– Clause 22/45 PHY devices (MDIO)
– Fixed (emulated) links (MAC to MAC)
– SFP/SFF w/ optional EEPROM/diagnostics

● Rationale:
– Systems having all of the above like SOHO switches
– Maximize code share-ability and correctness
– Better control over auto-negotiation process
– Simply supporting the hardware!

PHYLINK
● Uses:

– Device Tree for HW description:
● phy-handle
● fxed-link
● sfp/sf

– Linux i2c subsystem for EEPROM/diagnostics
– PHY library for Clause 22/45 devices

● Provides:
– SFP bus abstraction layer

PHYLINK
● SFP bus:

struct sfp_upstream_ops {

 int (*module_insert)(void *priv, const struct sfp_eeprom_id
*id);

 void (*module_remove)(void *priv);

 void (*link_down)(void *priv);

 void (*link_up)(void *priv);

 int (*connect_phy)(void *priv, struct phy_device *);

 void (*disconnect_phy)(void *priv);

};

PHYLINK
● On-going araes of work:

– SFP/SFF quirks (invalid EEPROM etc.)
– Lack of signals (LOS, TX-DISABLE etc.)
– Wider adoption: Marvell PP2, NETA etc.

● Would be nice if NIC vendors used it:
– If nothing else, the SFP bus infrastructure
– Would help build a more robust implementation

DSA
● Feature complete! Obviously not :)
● On-going work:

– Multicast without bridge (each port as separate
network device not grouped)

– https://github.com/netdsa/dsatest
– Bug fxing
– Getting more devices supported: Microchip KSZ

https://github.com/netdsa/dsatest

DSA
● CPU/DSA network devices:

– Two headed links between two devices
– No representors
– ethtool overlays onto master DSA device to access

CPU statistics, etc.
– Devlink to expose?

● Statistics
● Link state
● Register dumps

Lightweight devices
● Diferent yet converging problems:

– Memory footprint:
● David Ahern’s LWT: https://github.com/dsahern/linux net/lwt-

dev

– Control only interfaces:
● Florian’s L2-only:

https://github.com/fainelli/linux/commits/l2-only
● Si-Wei’s IFF_HIDDEN_DEVICE:

https://patchwork.ozlabs.org/patch/893971/

Lightweight devices
● Possible path forward:

– Continue with David’s patches
– Add tuning knobs to select diferent features to be

disabled by caller:
● sysfs
● IPv4/v6 stack
● Notifcations?

– Might involved a preliminary phase to clean-up
net_device (yeah..right..)

Too many interfaces
● ethtool::rxnfc
● tc: cls_u32, cls_fower etc.
● nftables/iptables

Too many interfaces
● Issues:

– It’s all the same shared HW being programmed
– Diferent user-space programming interfaces and in-kernel

representations
– Slightly diferent feature sets:

● cls_fower is more feature complete to specify matches/actions
● ethtool::rxnfc supports location placement (directed or automatic) and

returns it to user-space
● nftables/iptables is last to come, no upstream driver supports fow ofoad

yet, you lose!

– Lack of reviewer enforced that one API over the other must be
implemented for new drivers

Too many interfaces
● Let’s move with tc anyway:

– It’s complicated so it all gives us job security :)
– Must add equivalent of location placement to make it

strictly equivalent to ethtool

● In kernel representation:
– Largely confated with fow_dissector which upsets

people
– How about:

● Netlink attributes → ethtool data structures → driver?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

