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Miscellany
I’m not good at grand unifying themes…

● RX batching (“skbundle”)
● Merging OVS megafows
● Loose GRO
● ARFS fapping issue
● Inevitable eBPF-verifer argument

Edward Cree
Netconf ‘18, Boston MA
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Batching/bulking design

● RFC patches[1] back in April 2016

– Were not well received
– But now Spectre may revive interest

● Leverages existing network stack

– No early demux, no “crazy hashes across 
57 headers”, no second implementation to 
get out of sync with the main one

● Unit of work is the SKB list

[1] http://lists.openwall.net/netdev/2016/04/19/89
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Listifcation algorithm

● Simple case: “if (skb_is_x(skb)) { do_x(skb); } 
else { do_not_x(skb); }”

– Example is PFMEMALLOC
● Have a “current list”, and track whether it’s a 

list of x-es or not-x-es.
● When next skb in source list doesn’t match 

current list, dispatch current list

– “if (list_is_x) { do_x_list(list); } else 
{ do_not_x_list(list); }”

● Then start a new list with next skb
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Listifcation algorithm

● More complex cases – packet_type lookup 
sent SKBs singly to taps (e.g. tcpdump), list 
to last recipient only

– But could change this, at cost of more 
complex code

● Indirect calls add a →handle_list() method, if 
it’s absent then call →handle() in a loop.

– “sameness” for list is if the struct we’re 
getting these methods from is the same.
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Listifcation principle

● Absolute minimum of new “network” code

– Only “list manglement” code in new 
functions

● Done by factoring out all those “skb_is_x()” 
and “do_x_skb()” routines

● NOT a parallel implementation of the 
datapath, just a diferent way of hooking up 
the bits of the existing datapath

● Split lists when you fnd you need to, don’t 
try to do it in advance (like GRO does)
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Listifcation results

● Original results are well out of date now (pre-
Spectre, and kernel has moved on in 2 years)

● Saw 25% improvement in packet rate

– 1-byte UDP packets
– 10 TX streams, 1 RX queue
– No frewall/iptables/tc/netflter/etc…

● Only went as far as IP layer
● Design inherently allows gradual/creeping 

listifcation of the stack, no fag day needed
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Listifcation results

● Have rebased onto net-next, re-tested 
(without a retpoline-capable gcc!)

● Testing is again UDP streams to a single cpu

– NetPerf, IRQs on one CPU, app on another
– Either with just one HW RXQ, or several all 

pinned to the same CPU
– HW is Solarfare SFN8522 10GbE adaptor, 

dellr710 server
● Also ran tests with a single iptables rule (port 

drop on a range not matching the trafc)
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Listifcation results

● Very variable, from negligible change up to 
more than 20% increase.

● 1-stream cases TX limited, ~20% decrease in 
RX CPU usage.
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Listifcation results - retpoline

● For few streams, up to 20% less CPU usage.
● Many streams, throughput increases by a few 

percent.  It’s not huge.

– Perhaps partly because only one indirect 
call (ip_rcv) listifed so far
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Listifcation plans

● Some further cleanup of the patches
● Perf measures with “real-world” 

frewall/netflter/etc were demanded before

– So can someone give me a real-world 
ruleset to test with?

– Unlike some people here I can’t just ask 
the datacenter sysadmins for a copy

● Measure forwarding perf (e.g. RFC2544)

– maybe even with lists all the way to TX…
– just skb->xmit_more, not a new ndo
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Listifcation plans

● Listifed XDP-generic (because, indirect call)

– would need JITs to produce list-unwrap loop 
in prologue/epilogue

– User-supplied eBPF program doesn’t need 
to know

● Push further up the stack

– e.g. TCP/UDP can go all the way to socket 
enqueue

– Might see diminishing returns, but also 
might see the opposite, just don’t know.
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Megafow merging

● Idea to improve performance of OVS 
datapath / other fower-like masked matches

● Find megafows (masksets) with nearly the 
same masks

● Hierarchical lookup, mask of group is 
intersection of member masks

– Group’s hashtable tells which members 
might match

● Tested a random model (likely worse than 
real-world masksets).
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Megafow merging - model

● Simple abstracted model, written in Python
● Has 72 bits of key, masksets are random 

bitmasks
● Each megafow has rand(1, 100) flters
● Code available on request

– But it’s not pretty
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Megafow merging - results
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• Predictable performance (same in hit & 
miss cases)

• Faster than linear miss
• But slower than linear hit
• Trade-off worth it?
• Want real-world masksets to do more 

relevant/realistic tests.

• Using number of hash lookups as 
perf metric

• Linear miss is predictable – always 
#masksets * #tests

• So view others as fraction of that
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Megafow merging - plans

● Keep experimenting with merge heuristics

– Currently greedy algorithm driven by 
Hamming distances

– Detects “useless” groups and repartitions
– Quite slow, even by Python standards

● Take a leaf out of bpflter’s book

– Finding good groups is intensive 
calculation – do it in userspace
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Loose GRO

● Wacky untested idea
● If sysadmin knows they’re not doing 

forwarding, don’t need the “GRO guarantee”
● So can coalesce more packets
● This is the only reason people still want the 

“soft LRO” in the out-of-tree sfc driver

– Which I’d love to get rid of
– Smaller dif between in-tree and out-of-tree 

makes my life a lot easier ;-)
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ARFS fap
● Caused by misconfgured interrupt afnities
● cpu→rxq map is many-to-many

– So current “rxq == skb rxq” is too strict
– Instead use the reverse-reverse-map
– Check if cpu in irqmask of skb rxq

● Unfnished project, urgency went away after 
we fxed sfc’s irq afnity hints

– But user could still create the bad confg
● Have patch but haven’t proved it fxes 

problem.
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Backup

If we have time for an argument
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eBPF Verifer
● Can’t put of the showdown any longer
● What’s good for compilers in userspace is not 

always good for verifer in the kernel
● Data structures should be implicit unless 

there’s a reason to make them textbook
● Hence register-parent chains rather than dom 

trees, subprog/bb indices and callee/r 
bitmasks in aux data rather than pointer tree 
replicating control-fow graph

● Avoiding full walk maybe mathematically 
impossible, learn to like it

These are just opinions; I’m open to being convinced to change them…
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