
 1 / 19

Miscellany
I’m not good at grand unifying themes…

● RX batching (“skbundle”)
● Merging OVS megafows
● Loose GRO
● ARFS fapping issue
● Inevitable eBPF-verifer argument

Edward Cree
Netconf ‘18, Boston MA

 2 / 19

Batching/bulking design

● RFC patches[1] back in April 2016

– Were not well received
– But now Spectre may revive interest

● Leverages existing network stack

– No early demux, no “crazy hashes across
57 headers”, no second implementation to
get out of sync with the main one

● Unit of work is the SKB list

[1] http://lists.openwall.net/netdev/2016/04/19/89

 3 / 19

Listifcation algorithm

● Simple case: “if (skb_is_x(skb)) { do_x(skb); }
else { do_not_x(skb); }”

– Example is PFMEMALLOC
● Have a “current list”, and track whether it’s a

list of x-es or not-x-es.
● When next skb in source list doesn’t match

current list, dispatch current list

– “if (list_is_x) { do_x_list(list); } else
{ do_not_x_list(list); }”

● Then start a new list with next skb

 4 / 19

Listifcation algorithm

● More complex cases – packet_type lookup
sent SKBs singly to taps (e.g. tcpdump), list
to last recipient only

– But could change this, at cost of more
complex code

● Indirect calls add a →handle_list() method, if
it’s absent then call →handle() in a loop.

– “sameness” for list is if the struct we’re
getting these methods from is the same.

 5 / 19

Listifcation principle

● Absolute minimum of new “network” code

– Only “list manglement” code in new
functions

● Done by factoring out all those “skb_is_x()”
and “do_x_skb()” routines

● NOT a parallel implementation of the
datapath, just a diferent way of hooking up
the bits of the existing datapath

● Split lists when you fnd you need to, don’t
try to do it in advance (like GRO does)

 6 / 19

Listifcation results

● Original results are well out of date now (pre-
Spectre, and kernel has moved on in 2 years)

● Saw 25% improvement in packet rate

– 1-byte UDP packets
– 10 TX streams, 1 RX queue
– No frewall/iptables/tc/netflter/etc…

● Only went as far as IP layer
● Design inherently allows gradual/creeping

listifcation of the stack, no fag day needed

 7 / 19

Listifcation results

● Have rebased onto net-next, re-tested
(without a retpoline-capable gcc!)

● Testing is again UDP streams to a single cpu

– NetPerf, IRQs on one CPU, app on another
– Either with just one HW RXQ, or several all

pinned to the same CPU
– HW is Solarfare SFN8522 10GbE adaptor,

dellr710 server
● Also ran tests with a single iptables rule (port

drop on a range not matching the trafc)

 8 / 19

1 2 4 10
0.00

2.00

4.00

6.00

8.00

10.00

12.00

0.00

4.00

8.00

12.00

16.00

20.00

24.00

single RXQ old

single RXQ new

single RXQ delta

multi RXQ old

multi RXQ new

multi RXQ delta

with NF old

with NF new

with NF delta

Listifcation results

● Very variable, from negligible change up to
more than 20% increase.

● 1-stream cases TX limited, ~20% decrease in
RX CPU usage.

P
ac

ke
t

ra
te

 (
M

bi
t)

D
el

ta
 (

%
)

 9 / 19

1 2 4 10
0.00

1.50

3.00

4.50

6.00

7.50

9.00

0.00

4.00

8.00

12.00

16.00

20.00

24.00

single RXQ old

single RXQ new

single RXQ delta

single RXQ ΔCPU

multi RXQ old

multi RXQ new

multi RXQ delta

with NF old

with NF new

with NF delta

with NF ΔCPU

Listifcation results - retpoline

● For few streams, up to 20% less CPU usage.
● Many streams, throughput increases by a few

percent. It’s not huge.

– Perhaps partly because only one indirect
call (ip_rcv) listifed so far

P
ac

ke
t

ra
te

 (
M

bi
t)

D
el

ta
 (

%
)

 10 / 19

Listifcation plans

● Some further cleanup of the patches
● Perf measures with “real-world”

frewall/netflter/etc were demanded before

– So can someone give me a real-world
ruleset to test with?

– Unlike some people here I can’t just ask
the datacenter sysadmins for a copy

● Measure forwarding perf (e.g. RFC2544)

– maybe even with lists all the way to TX…
– just skb->xmit_more, not a new ndo

 11 / 19

Listifcation plans

● Listifed XDP-generic (because, indirect call)

– would need JITs to produce list-unwrap loop
in prologue/epilogue

– User-supplied eBPF program doesn’t need
to know

● Push further up the stack

– e.g. TCP/UDP can go all the way to socket
enqueue

– Might see diminishing returns, but also
might see the opposite, just don’t know.

 12 / 19

Megafow merging

● Idea to improve performance of OVS
datapath / other fower-like masked matches

● Find megafows (masksets) with nearly the
same masks

● Hierarchical lookup, mask of group is
intersection of member masks

– Group’s hashtable tells which members
might match

● Tested a random model (likely worse than
real-world masksets).

 13 / 19

Megafow merging - model

● Simple abstracted model, written in Python
● Has 72 bits of key, masksets are random

bitmasks
● Each megafow has rand(1, 100) flters
● Code available on request

– But it’s not pretty

 14 / 19

Megafow merging - results

0 32 64 96 128 160
0

4000

8000

12000

16000

20000

24000

28000

32000

0

6

12

18

24

30

36

42

48

linear miss

linear hit

#groups

grouped miss

grouped hit

0 32 64 96 128 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

grp miss frac

grp hit frac

lin hit frac

• Predictable performance (same in hit &
miss cases)

• Faster than linear miss
• But slower than linear hit
• Trade-off worth it?
• Want real-world masksets to do more

relevant/realistic tests.

• Using number of hash lookups as
perf metric

• Linear miss is predictable – always
#masksets * #tests

• So view others as fraction of that

 15 / 19

Megafow merging - plans

● Keep experimenting with merge heuristics

– Currently greedy algorithm driven by
Hamming distances

– Detects “useless” groups and repartitions
– Quite slow, even by Python standards

● Take a leaf out of bpflter’s book

– Finding good groups is intensive
calculation – do it in userspace

 16 / 19

Loose GRO

● Wacky untested idea
● If sysadmin knows they’re not doing

forwarding, don’t need the “GRO guarantee”
● So can coalesce more packets
● This is the only reason people still want the

“soft LRO” in the out-of-tree sfc driver

– Which I’d love to get rid of
– Smaller dif between in-tree and out-of-tree

makes my life a lot easier ;-)

 17 / 19

ARFS fap
● Caused by misconfgured interrupt afnities
● cpu→rxq map is many-to-many

– So current “rxq == skb rxq” is too strict
– Instead use the reverse-reverse-map
– Check if cpu in irqmask of skb rxq

● Unfnished project, urgency went away after
we fxed sfc’s irq afnity hints

– But user could still create the bad confg
● Have patch but haven’t proved it fxes

problem.

 18 / 19

Backup

If we have time for an argument

 19 / 19

eBPF Verifer
● Can’t put of the showdown any longer
● What’s good for compilers in userspace is not

always good for verifer in the kernel
● Data structures should be implicit unless

there’s a reason to make them textbook
● Hence register-parent chains rather than dom

trees, subprog/bb indices and callee/r
bitmasks in aux data rather than pointer tree
replicating control-fow graph

● Avoiding full walk maybe mathematically
impossible, learn to like it

These are just opinions; I’m open to being convinced to change them…

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

