I Miscellany

I’m not good at grand unifying themes...

« RX batching (“skbundle”)
 Merging OVS megaflows

* Loose GRO

* ARFS flapping issue

* I[nevitable eBPF-verifier argument

Edward Cree
Netconf ‘18, Boston MA

1/19

I Batching/bulking design

 RFC patches[1] back in April 2016

- Were not well received
- But now Spectre may revive interest
* Leverages existing network stack

- No early demux, no “crazy hashes across
57 headers”, no second implementation to
get out of sync with the main one

 Unit of work is the SKB list

[1] http://lists.openwall.net/netdev/2016/04/19/89
2/19

I Listification algorithm

» Simple case: “if (skb is x(skb)) { do x(skb); }
else { do _not x(skb); }”

- Example is PFMEMALLOC

« Have a “current list”, and track whether it's a
list of x-es or not-x-es.

 When next skb in source list doesn’t match
current list, dispatch current list

- "if (list_is_x) { do_x_list(list); } else
{ do_not x list(list); }”

« Then start a new list with next skb 3/19

I Listification algorithm

* More complex cases - packet type lookup
sent SKBs singly to taps (e.g. tcpdump), list
to last recipient only

- But could change this, at cost of more
complex code

* Indirect calls add a =handle_list() method, if
it’s absent then call -»handle() in a loop.

- “sameness” for list is if the struct we're
getting these methods from is the same.

4/19

I Listification principle

 Absolute minimum of new “network” code

- Only “list manglement” code in new
functions

* Done by factoring out all those “skb is x()”
and “do x skb()” routines

 NOT a parallel implementation of the
datapath, just a different way of hooking up
the bits of the existing datapath

» Split lists when you find you need to, don’t
try to do it in advance (like GRO does)

5/19

I Listification results

* Original results are well out of date now (pre-
Spectre, and kernel has moved on in 2 years)

* Saw 25% improvement in packet rate

- 1-byte UDP packets

- 10 TX streams, 1 RX queue

- No firewall/iptables/tc/netfilter/etc...
* Only went as far as IP layer

» Design inherently allows gradual/creeping
listification of the stack, no flag day needed

6/19

I Listification results

 Have rebased onto net-next, re-tested
(without a retpoline-capable gcc!)

» Testing is again UDP streams to a single cpu

- NetPerf, IRQs on one CPU, app on another

- Either with just one HW RXQ, or several all
pinned to the same CPU

- HW is Solarflare SFN8522 10GbE adaptor,
dellr710 server

» Also ran tests with a single iptables rule (port
drop on a range not matching the traffic) .,

I Listification results

<)
12.00 v 24.00 >
©
. =
10.00 , 20.00 Q
g . D
E\ == single RXQ old
O 8.00 16.00 = = == = single RXQ new
> * =V single RXQ delta
~ | 1500 el MUItI RXQ old
2 \ 2 multi RXQ new
© . =¥+ multi RXQ delta
-lq—i) 8.00 =—fii=—=\ith NF old
v = = == = Wwith NF new
O * =V = with NF delta
T 200 R — 4.00
ol . t
* - - - ' ¢ . *
000¥ * o 0.00
1 2 4 10

* Very variable, from negligible change up to
more than 20% increase.

 1-stream cases TX limited, ~20% decrease in
RX CPU usage.

8/19

I Listification results - retpoline

(=]
24.00

= = == = single RXQ new

—

e 6.00 .7 1600, y. single RXQ delta

> / Py single RXQ ACPU

~ w ——#—— multi RXQ old

9 4.50 7 y. . 12.00 multi RXQ new

E ‘ v ") = =V = multi RXQ delta

E 3.00 . ‘e ‘Y 8.00 i \\jith NF old

N ' . “ ' = = === with NF new

% - o, V- Mth NF delta

o 150 W e e e e ¥ 4.00 with NF ACPU
000 ¥ = = = * " ° M 0.00

* For few stréams, uZp to 26% IessmCPU usage.

 Many streams, throughput increases by a few
percent. It's not huge.

- Perhaps partly because only one indirect
call (ip_rcv) listified so far 9/19

I Listification plans

* Some further cleanup of the patches

 Perf measures with “real-world”
firewall/netfilter/etc were demanded before

- S0 can someone give me a real-world
ruleset to test with?

- Unlike some people here | can’t just ask
the datacenter sysadmins for a copy

 Measure forwarding perf (e.g. RFC2544)

- maybe even with lists all the way to TX...
- just skb->xmit more, not a new ndo

10/19

I Listification plans

 Listified XDP-generic (because, indirect call)

- would need JITs to produce list-unwrap loop
in prologue/epilogue

- User-supplied eBPF program doesn’t need
to know

* Push further up the stack

- e.g. TCP/UDP can go all the way to socket
engueue

- Might see diminishing returns, but also
might see the opposite, just don’t know.

11/19

I Megaflow merging

* |dea to improve performance of OVS
datapath / other flower-like masked matches

* Find megaflows (masksets) with nearly the
same masks

» Hierarchical lookup, mask of group is
intersection of member masks

- Group’s hashtable tells which members
might match

» Tested a random model (likely worse than
real-world masksets).

12 /19

I Megaflow merging - model

* Simple abstracted model, written in Python

 Has 72 bits of key, masksets are random
bitmasks

 Each megaflow has rand(1, 100) filters
» Code available on request
- But it's not pretty

13/19

I Megaflow merging - results

32000 g™ 48
-
28000 .I. 42
-
24000 " .y 36
-
o
20000 .l. », “;‘*‘& 30
-
m
= $
16000 u 24
o$
12000 ‘lgs 3¢ 3‘ 18
8000 “;;‘;¥tk t“ 12
4000 "“ 6
lglll
0 0
0 32 64 96 128 160

Predictable performance (same in hit &
MIiss cases)

Faster than linear miss

But slower than linear hit

Trade-off worth it?

Want real-world masksets to do more
relevant/realistic tests.

Using number of hash lookups as
perf metric

Linear miss is predictable — always
#masksets * #tests

So view others as fraction of that

M linear miss

¢ linear hit
#groups

A grouped miss

» grouped hit
1
0.9
0.8 ¢
' .
*® 0 32
07 $¥ ey $ 9%, “‘:t“?.‘,‘ o0%
“’ ved o0es 8, 7 % ee
06 $ig. 33‘33“:, P .
|
0.5 u"“'t=l.H“Ill'li“llIIlllll.l..lll.l ¢ grp miss frac
grp hit frac
0.4 ¢ M lin hit frac

0.3
0.2
0.1

0
0 32 64 96 128 160

I Megaflow merging - plans

» Keep experimenting with merge heuristics

- Currently greedy algorithm driven by
Hamming distances

- Detects “useless” groups and repartitions
- Quite slow, even by Python standards
» Take a leaf out of bpfilter's book

- Finding good groups is intensive
calculation - do it in userspace

15/19

I Loose GRO

* Wacky untested idea

* If sysadmin knows they’re not doing
forwarding, don’t need the “GRO guarantee”

* SO can coalesce more packets

* This Is the only reason people still want the
“soft LRO” in the out-of-tree sfc driver

- Which I'd love to get rid of

- Smaller diff between in-tree and out-of-tree
makes my life a lot easier ;-)

16 /19

IARFS flap

» Caused by misconfigured interrupt affinities
* CpU—rxq map is many-to-many
- S0 current “rxq == skb rxq” is too strict
- Instead use the reverse-reverse-map
- Check if cpu in irgmask of skb rxq

Unfinished project, urgency went away after
we fixed sfc’s irg affinity hints

- But user could still create the bad config

Have patch but haven’t proved it fixes
problem.

17 /19

I Backup

If we have time for an argument

18 /19

I eBPF Verifier

These are just opinions; I’'m open to being convinced to change them...

» Can’t put off the showdown any longer

 What’'s good for compilers in userspace is not
always good for verifier in the kernel

» Data structures should be implicit unless
there’s a reason to make them textbook

* Hence register-parent chains rather than dom
trees, subprog/bb indices and callee/r
bitmasks in aux data rather than pointer tree
replicating control-flow graph

* Avoiding full walk maybe mathematically
Impossible, learn to like it

19/19

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

