
BPF and the future of the kernel 
extensibility

June 2018
ast@kernel.org



Goal

• Let non-kernel developers safely and easily modify kernel behavior
==
• Make BPF easy to use

-- This presentation focuses on past, present and the future of BPF --



BPF in the past

• Either a truck or a robot
• Cool and powerful, but only in these two forms
• tcpdump, dhclient, pcap, nmap, solarflare – packet filtering
• seccomp – chrome sandbox



BPF in the present

• Giant lego set where instruction manual was not printed



BPF in the present

• Despite lack of instructions people built lots of REAL rocket ships:
• Katran, droplet, tcpeventd, fbflow, blklatencyd, dynolog, strobelight, ttld, ila
• Lots of BCC tools, bpftrace, ply, systemtap-bpf
• Cilium, weaveworks, sysdig, systemd per-cgroup

• ships do look similar



Why folks learn BPF ?

• NOT because it’s cool
• To solve real production issues the user space only solution is not good enough
• Kernel behavior needs to be modified
• Best solutions appear when kernel and user space work together

• when kernel is difficult to extend and roll in production, it is bypassed
• ex: dpdk/spdk, seastar/scylladb, snabb, odp, vpp

• kernel needs BPF to stay relevant



How BPF programs look today?

• Loop-free, lock-free, short BPF programs that glue lots of kernel helpers and invoked at 
specified hooks



BPF hooks in tracing

• kprobe – read only access to arguments of any kernel function
• uprobe – read and write access to any user space process
• syscalls – read only access to syscall args
• pmu events (timers, hw/sw counters) – read only pt_regs
• tracepoint – read only access to tracepoint record defined in events/…/format
• raw_tracepoint – read only access to kernel internal tracepoint args



BPF hooks in networking

• sockets – read only access to skb
• XDP – raw dma buffer of the NIC 
• lwt – routing in/out/xmit partial read/write of skb
• clsbpf – tc ingress/egress full read/write of skb
• cgroup scoped

• socket create
• L3 socket ingress/egress read only and drop
• tcp-bpf variety (timeout_init, rwnd_init, tcp_connect, active_established, 

passive_established, needs_ecn, base_rtt, rto, retrains, state_change)
• sockmap (L7 parsing on ingress before recvmsg with redirect) == in-kernel tcp proxy
• device (mknod, read, write)
• bind/connect



BPF helpers

• map access (lookup, update, delete)
• tail_call – jump into next bpf program
• perf_event_output – ring buffer communication with user space
• probe_read, probe_read_str, probe_write_user – probe kernel memory and write into user
• get_stackid – kernel/user stack collection
• ktime_get_ns, prandom, processor_id, numa_node_id
• get_current_task
• override_return – fault injection



BPF helpers in networking

• load_bytes, store_bytes – batch modify skb
• change_head, change_tail – modify skb size
• csum_replace, csum_update, csum_diff
• change_proto – ipv4->ipv6
• set/get_tunnel, push/pop_vlan – encap/decap
• set_hash/get_hash
• get_socket_cookie, get_socket_uid – android traffic accounting
• setsockopt, getsockopt – tcp-bpf
• redirect – xdp and skb level redirect
• sk_redirect – L7 tcp stream redirect



BPF verifier



BPF verifier in the present

• Loop-free, lock-free, short BPF programs with single argument (context) that call BPF 
helpers

• BPF-to-BPF calls started new era of verifier analysis
• arbitrary arguments (up to 5) and arbitrary return value



BPF verifier in the future

• track pointer life time within program (the work is done by Joe Stringer from Covalent)
• use-case: return socket pointer from bpf helper and make sure that program does 

sock_put() on it
• allows lock/unlock, malloc/free to be called by the program



BPF verifier in the future

• bounded loops (competing proposals from John Fastabend from Covalent and Ed Cree 
from Solarflare)
• safe loops inside programs!



BPF verifier in the future

• local storage to eliminate hash lookups
• global variables
• indirect calls that are statically verified and patched
• libraries
• dynamic linking



BPF verifier in the future
• move away from existing brute force "walk all instructions" approach to proper compiler 

technology and static analysis
• remove #define BPF_COMPLEXITY_LIMIT 128k crutch
• remove #define BPF_MAXINSNS 4k
• support arbitrary large programs and libraries

• 1 Million BPF instructions
• an algorithm to solve Rubik's cube will be expressible in BPF



BPF in the future

• easy to use
• easy to learn



Thank you!
Please ask questions
Part 2 is coming



Agenda

- btf update
- libbpf elf loader, elf->c codegen
- katran
- fd-based networking and cgroups
- cgroup local storage
- common driver core
- firmware no more



BTF update
- similar to old Compat Type Format yet different encoding
- landed

- all basic types, structs, unions
- support for map key and value
- btf_id, btf_fd, get_next introspection

- implemented
- support for 'function pointer type'
- pahole -> btf

- upcoming
- reuse 'function pointer type' to describe bpf progs

(yet another difference vs CTF)
- describes prog name, arguments, return type
- integrate with verifier for safety checks
- llvm btf backend
- libbpf and bpftool support

- future
- vmlinux dwarf->btf section
- llvm pointer dereference (bpf_probe_read) annotation with symbolic field name



libbpf
- todays libbpf is elf loader only
- implemented

- btf reader from kernel and pretty print
- future

- write into bpf maps with btf info from kernel
- extend with dwarf->btf converter and push btf to kernel
- convert .o bpf files into standalone .c files where bpf progs represented as hex bytes

and C code that can load progs/maps as a sequence of sys_bpf() calls.
That removes elf/dwarf from dependency for final app that compiles and links these
generated .c



katran
- facebook open sourced production L4 load balancer (katran)
- https://github.com/facebookincubator/katran
- gpl-2
- https://code.facebook.com/posts/1906146702752923/open-sourcing-katran-a-scalable-network-load-balancer/
- key advantage enabled by XDP:



FD based APIs
- all bpf attachments points can be either global (xdp, tc, cgroup) or local (sockets, perf_events)
- global -> the progs stay attached even when user space exits
- local -> attached to FDs. auto-detach, auto-unload when user space exits
- recently added FD based kprobe, uprobe, raw_tracepoint APIs
- cgroup-bpf is difficult to get right, since cgroup can be cgroup_is_dead() or unmounted

- centralize cgroup-bpf management into single deamon
- introduce new cgroup-fd object just for attaching bpf to it

- convert tc ingress/egress hooks to be FD based as well
- solves concurrency issue (multi process access to the same attach point)
- solves autocleanup



cgroup local storage
- similar to Thread Local Storage
- new map type. one per program. value_size = requested size of local storage
- bpf_get_local_storage(map, flags)

- cheap and fast helper to return a pointer to scratch buffer that is uniquily
visible to this program only at given cgroup

- storage area allocated once at attach time of bpf prog to cgroup
- destroyed when prog is detached
- access from user space via bpf_map_lookup()/update()

- next steps
- socket local storage and task local storage
- clang+llvm extension:

__cgroup struct cgroup_buf {
int var;

} buf;
int bpf_prog(ctx)
{

access buf.var;
}



common driver core
- drivers are slow to add XDP support
- move memory management out of drivers into core



firmware no more
- proprietary firmware in a NIC is a huge security threat. Bigger than spectre/meltdown
- firmware used to be tiny sw shim baked into chip once
- now firmware is a monster blob full of secret features and bugs
- firmware sw teams often several times larger than driver teams
- most of the firmware logic has to become open, become part of the driver, and kernel git
- anything that can be flushed -> open
- baked in forever firmware (analog, phy, power, tpm) -> proprietary for now


