BPF and the future of the kernel
extensibility

June 2018
ast@kernel.org

facebook

Goal

-- This presentation focuses on past, present and the future of BPF --

» Let non-kernel developers safely and easily modify kernel behavior

 Make BPF easy to use

BPF in the past

Either a truck or a robot

Cool and powerful, but only in these two forms

tcpdump, dhclient, pcap, nmap, solarflare — packet filtering

seccomp — chrome sandbox

BPF in the present

+ Giant lego set where instruction manual was not printed

BPF in the present

» Despite lack of instructions people built lots of REAL rocket ships:
« Katran, droplet, tcpeventd, fbflow, blklatencyd, dynolog, strobelight, ttld, ila
» Lots of BCC tools, bpftrace, ply, systemtap-bpf

 Cilium, weaveworks, sysdig, systemd per-cgroup

Why folks learn BPF ?

* NOT because it’s cool
« To solve real production issues the user space only solution is not good enough
» Kernel behavior needs to be modified

» Best solutions appear when kernel and user space work together

» when kernel is difficult to extend and roll in production, it is bypassed
» ex: dpdk/spdk, seastar/scylladb, snabb, odp, vpp

» kernel needs BPF to stay relevant

How BPF programs look today?

» Loop-free, lock-free, short BPF programs that glue lots of kernel helpers and invoked at
specified hooks

BPF hooks in tracing

» Kkprobe —read only access to arguments of any kernel function

« uprobe — read and write access to any user space process

« syscalls — read only access to syscall args

* pmu events (timers, hw/sw counters) — read only pt_regs

« tracepoint — read only access to tracepoint record defined in events/.../format

* raw_tracepoint — read only access to kernel internal tracepoint args

BPF hooks in networking

» sockets — read only access to skb
» XDP —raw dma buffer of the NIC
* lwt — routing in/out/xmit partial read/write of skb
* clsbpf — tc ingress/egress full read/write of skb
* cgroup scoped
» socket create
» L3 socket ingress/egress read only and drop

* tcp-bpf variety (timeout_init, rwnd_init, tcp_connect, active_established,
passive_established, needs_ecn, base_rtt, rto, retrains, state_change)

» sockmap (L7 parsing on ingress before recvmsg with redirect) == in-kernel tcp proxy
» device (mknod, read, write)

* bind/connect

BPF helpers

» map access (lookup, update, delete)

« tail_call — jump into next bpf program

» perf_event_output — ring buffer communication with user space

* probe_read, probe_read_str, probe_write_user — probe kernel memory and write into user
» get_stackid — kernel/user stack collection

« ktime_get_ns, prandom, processor_id, numa_node_id

« get_current_task

 override_return — fault injection

BPF helpers in networking

» load_bytes, store_bytes — batch modify skb

« change_head, change_tail — modify skb size

* csum_replace, csum_update, csum_diff

« change_proto — ipv4->ipv6

 set/get_tunnel, push/pop_vlan — encap/decap

« set_hash/get_hash

» get_socket_cookie, get_socket_uid — android traffic accounting
» setsockopt, getsockopt — tcp-bpf

 redirect — xdp and skb level redirect

« sk_redirect — L7 tcp stream redirect

BPF verifier

YOU SHALL

NOT PASS

BPF verifier in the present

» Loop-free, lock-free, short BPF programs with single argument (context) that call BPF
helpers

» BPF-to-BPF calls started new era of verifier analysis

* arbitrary arguments (up to 5) and arbitrary return value

BPF verifier in the future

« track pointer life time within program (the work is done by Joe Stringer from Covalent)

» use-case: return socket pointer from bpf helper and make sure that program does
sock_put() on it

« allows lock/unlock, malloc/free to be called by the program

BPF verifier in the future

» bounded loops (competing proposals from John Fastabend from Covalent and Ed Cree
from Solarflare)

« safe loops inside programs!

BPF verifier in the future

* local storage to eliminate hash lookups

 global variables

« indirect calls that are statically verified and patched
* libraries

 dynamic linking

BPF verifier in the future

* move away from existing brute force "walk all instructions" approach to proper compiler
technology and static analysis

» remove #define BPF_COMPLEXITY_LIMIT 128k crutch
» remove #define BPF_MAXINSNS 4k
 support arbitrary large programs and libraries

« 1 Million BPF instructions

 an algorithm to solve Rubik's cube will be expressible in BPF

BPF in the future

- easy to use

* easy to learn

Thank you!
Please ask questions
Part 2 is coming

Agenda

- btf update

- libbpf elf loader, elf->c codegen

- katran

- fd-based networking and cgroups
- cgroup local storage

- common driver core

- firmware no more

BTF update

- similar to old Compat Type Format yet different encoding
- landed
- all basic types, structs, unions
- support for map key and value
- btf_id, btf_fd, get_next introspection
- implemented
- support for 'function pointer type'
- pahole -> btf
- upcoming
- reuse 'function pointer type' to describe bpf progs
(yet another difference vs CTF)
- describes prog name, arguments, return type
- integrate with verifier for safety checks
- llvm btf backend
- libbpf and bpftool support
- future
- vmlinux dwarf->btf section
- llvm pointer dereference (bpf_probe_read) annotation with symbolic field name

libbpf

- todays libbpf is elf loader only
- implemented
- btf reader from kernel and pretty print
- future
- write into bpf maps with btf info from kernel
- extend with dwarf->btf converter and push btf to kernel
- convert .o bpf files into standalone .c files where bpf progs represented as hex bytes
and C code that can load progs/maps as a sequence of sys_bpf() calls.
That removes elf/dwarf from dependency for final app that compiles and links these
generated .c

katran

- facebook open sourced production L4 load balancer (katran)
- https://github.com/facebookincubator/katran

- gpl-2

- https://code.facebook.com/posts/1906146702752923/open-sourcing-katran-a-scalable-network-load-balancer/

- key advantage enabled by XDP:

=) b L4LB Control Plane
Backend Application User Space
VIPs and Configuration Health checks
=y
/ XDP Packet Processor Linux Network Stack
% —(internet) — [% — i . eBPF Program
Sockets Kernel
\ = B Backend Selection Receive Local
Encapsulation
TCP/IP
=) b d Network Interface Controller
% - Client - Backend server
&9 - Network load balancer - Backend application

o - Switch

FD based APIs

- all bpf attachments points can be either global (xdp, tc, cgroup) or local (sockets, perf_events)
- global -> the progs stay attached even when user space exits
- local -> attached to FDs. auto-detach, auto-unload when user space exits
- recently added FD based kprobe, uprobe, raw_tracepoint APIs
- cgroup-bpfis difficult to get right, since cgroup can be cgroup_is_dead() or unmounted
- centralize cgroup-bpf management into single deamon
- introduce new cgroup-fd object just for attaching bpf to it
- convert tc ingress/egress hooks to be FD based as well
- solves concurrency issue (multi process access to the same attach point)
- solves autocleanup

cgroup local storage

- similar to Thread Local Storage
- new map type. one per program. value_size = requested size of local storage
- bpf_get_local_storage(map, flags)
- cheap and fast helper to return a pointer to scratch buffer that is uniquily
visible to this program only at given cgroup
- storage area allocated once at attach time of bpf prog to cgroup
- destroyed when prog is detached
- access from user space via bpf_map_lookup()/update()

- next steps
- socket local storage and task local storage
- clang+llvm extension:
__cgroup struct cgroup buf {
int var;
} buf;
int bpf prog(ctx)
{

access buf.var;

}

common driver core

- drivers are slow to add XDP support
- move memory management out of drivers into core

firmware no more

- proprietary firmware in a NIC is a huge security threat. Bigger than spectre/meltdown

- firmware used to be tiny sw shim baked into chip once

- now firmware is a monster blob full of secret features and bugs

- firmware sw teams often several times larger than driver teams

- most of the firmware logic has to become open, become part of the driver, and kernel git
- anything that can be flushed -> open

- baked in forever firmware (analog, phy, power, tpm) -> proprietary for now

