© CUMULUS

Nexthop and Nexthop Group Objects

November 6-7, 2017

David Ahern | Cumulus Networks

Prefixes out number nexthops by large factor

 100k's of routes with 10's to 100's of nexthops ratio typically > 10,000:1

Nexthop specs are currently integrated into route structs

- ipv4: fib_nh at the end of fib_info
 ipv4 does consolidate duplicate nexthop specs with multiple references to one fib_info
- ipv6: distributed within rt6_info and dst
- mpls: mpls_nh at the end of mpls_route

Redundant code and processing

Redundant processing adding routes

- lookups to validate gateway addresses
- comparison of nexthop specs
- percpu allocations
- validating lwtunnel state
- IPv4 FIB notifier FIB_EVENT_NH_ADD Ido indicated IPv6 needs notifier as well

All of it affects convergence time following a link event

critical benchmark for a NOS

Every protocol has independent notifiers to handle link events

- Family based code that does the same or almost the same processing with respect to nexthops
- For example, carrier state changes and marking or clearing RTNH_F_{DEAD,LINKDOWN} and walking fib looking for entries referencing device

IPv4 does this, IPv6 does not

Flame Graph: FRR inserting 700k routes

Nexthops and nexthop groups as separate objects

separate add/create/modify lifecycle from route entries

Routes can reference nexthop or nexthop group by id

Only applies to FIB entries

Nexthop Objects

IPv4 already does this to some extent with fib_info

- Still significant duplication and unnecessary work per prefix
- fib_info is more than just nexthop definition

Idea is similar to adding id to fib_info that is exposed to userspace

Subsequent routes pass id to avoid fib_info overhead

Multipath is a Nexthop Group

References other nexthop objects

Removes redundant processing on route add

- Already validated the nexthop gateway, device and LWT config
- IPv4, creating a fib_info only to free it in favor of existing

Opportunity to have better alignment across protocols

 Bring fib_info type efficiencies to IPv6 and MPLS Better memory utilization

No duplicate nexthop checking

Alignment with hardware offload

Enables New Features

More efficient means to update nexthops for 1,000's of routes

- Following a link event, L3 protocol determines new (better) nexthop for Nroutes
- Just updates 1 nexthop spec as opposed to deleting N-routes and adding them back with new nexthop

Failover nexthop

 Preferred nexthop for routes. If it goes down, routes seamlessly failover to backup

IPv4 routes with IPv6 nexthops

Needed for BGP unnumbered

Batching of route add?

Push down a series of prefixes and associated attributes with nexthop by id

Co-existence of models

If you like your current route model, you can keep it

- Current API route spec contains nexthop attributes Routes created with nexthops inline
- Connected and host routes

Routing daemons opt in to new API

- Create nexthop prior to adding route
- Routes added with reference to nexthop by id
- Routing daemons already track nexthops separately

Performance

Typically measured as latency or throughput

- packets/bytes per second received or sent
- Not strictly a relevant benchmark for H/W offload cases

Convergence time following a link event is more pressing

Motivation is scaling up to 1M+ routes

Installing 655,024 route entries, single nexthop:

Current:

time ip -batch /media/node/full-table-ipv4.txt

real 0m30.104s

- user 0m3.816s
- sys 0m14.614s

Nexthop objects:

time ip -batch /media/node/full-table-ipv4-nh.txt

real	0m22.206s
user	0m3.223s

sys 0m9.792s