
Super Networking Performance

Tom Herbert
6/14/2011



 Want much higher networking performance
 High performance mode for apps that need it
 Optimize for latency, throughput, CPU utilization
 No negative impact to low end or standard path
 Scale to 100 cores, 40 and 100 Gbps

 Motivated by applications, new technology
 Networking shouldn't be bottleneck for tightly 

coupled computing model or low latency apps 
 Technology drivers: fast network storage/memory, 

flash, HFT and HPC transactions

The need for speed



Onload as proof of concept

 Stack in userspace (not offload)
 LD_PRELOAD for sockets
 Poll device queues directly for lowest latency
 HW support just MQ + flow steering

 netperf RR (Solarflare onload)
 TCP: 8.5 usecs RTT, 4M tps/6 cores, 0.8M/1 core
 UDP: 8.0 usecs RTT latency, 4M tps/4 cores, 1M/1 core

 Load balancer application 
 Raw queue access to user space 
 1.3M tps not accelerated (16 cores)
 3M tps on one core



Some stack experiments

 Force NAPI polling
 Hack driver to always return budget

 kNetperf
 Data path implemented in kernel thread 

Test 50% RTT 90% RTT 99% RTT

Default 34 38 43

Force polling 27 28 32

kNetperf 30 34 36

Polling+kNetperf 17 18 27



 Latency
 Unloaded latency: 5 usec. RTT (over TCP)
 At 5M tps, 99th% latency 15 usecs RTT
 High priority blocked by lower for 1 MTU at most

 Throughput
 One CPU can do 40Gbps streaming
 25M tps on a single system

 CPU utilization
 One CPU can do 5M tps
 Linear scaling pps with number of CPUs

Performance goals



Techniques

 Per flow packet steering
 Programmable 4-tuple filters mapping to queues
 Accelerated RFS and more

 HW QoS
 High priority packet waits at most one MTU time 

for a low priority packet 

 Spin polling
 Poll HW queues directly from read/poll syscalls
 Tradeoff low latency for CPU



mmap networking

 Sockets
 Like PF_PACKET, but extend to protocol sockets 

(UDP, TCP, etc.)
 One syscall just to initiate IO and polling

 Device buffers
 Like FreeBSD netmap
 Combine with mmap sockets and flow steering
 Per queue buffer
 Zero copy send and receive 



Miscellany

 In development
 Byte queue limits
 Doc on packet steering
 SO_REUSEPORT
 TCP fast open
 TCP proportional rate recovery

 Open
 HTB: interface lock is still a pain
 Netdev flags: what is needed?
 Sendgroup: as pseudo multicast
 Device rate limiting: integrate into stack?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

