

Catching up With Herbert

Jamal Hadi Salim
Netconf 2011, Toronto, On, Ca

Some History

● Alexey's original scheme with softnet
● Herbert's changes with GRO
● Jamal's decoupling of TX Lock
● Herbert's jiffy/rescheduling changes
● Eric's busylock changes

Challenges Reproducing Theory

● In 2006, did not have pre-requisites
● Fast enough link to dump packets to

– I had 2 1xGbps ports
● 10G is getting commoditized, 40G coming

● Fast enough and sufficient amount of CPUs
– I had an “ok” 2 cpu machine

● 4 to 64 cpus common today

Experiment Setup

Kthread
UDP sender
 Bind cpu0

Kthread
UDP sender
 Bind cpu1

Kthread
UDP sender
 Bind cpu2

Kthread
UDP sender
 Bind cpu3

Netdev
+

Qdisc
Infrastructure

wire

Experiment Setup

● A 4-cpu Intel i5 Machine 2.27 Ghz
● Dummy device

● Infinite bandwidth

● Generate UDP traffic as fast as possible from
each CPU, concurrently for 30s or more
● Designed to overwhelm the qdisc

enqueue/dequeue subsytem

● Collect how long each CPU sits in the dequeue
region

Experiment Calibration

● One thread
● 1.24 Mpps, no drops

● Two Threads
● 2.03 Mpps, 2% drops

● Three Threads
● 1.59 Mpps, 15% drop

● Four Threads
● 1.32 Mpps, 40% drop
● Lets go for this

Kernel 3.0-rc1 Dequeue Distribution

3.0-rc1
0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

45000000

50000000

cpu0
cpu1
cpu2
cpu3
avg

Observations on 3.0-rc1

● Jiffy is dependent on Hz and clock sources
● Yielding is a factor of how many processes

asking for the cpu
● Introduce a packet quota

● Equivalent to the NAPI poll weight
● Less subjective to system load

Dequeue Distribution Packet Quota

Pkcnt-64 Pkcnt-32 Pkcnt-8 Pkcnt-5
0

5000000

10000000

15000000

20000000

25000000

cpu0
cpu1
cpu2
cpu3
avg

Add Packet Quota To Existing
Scheme

Jiffy-64 Jiffy-32 Jiffy-16 Jiffy-8 Jiffy-5
0

5000000

10000000

15000000

20000000

25000000

cpu0
cpu1
cpu2
cpu3
avg

Packet Quota Observations

● Worked better when I had all 3 variables
together
● Better distribution across variety of weights

● A packet quota of N+1 to 2N seemed the most
effective
● However, even at large quotas, there was a huge

fairness improvement over status quo

Conclusion

● Things have improved greatly since the first
GRO patches
● Batching no longer buys much
● Small change to improve fairness needed

Discussions

The dumb Drop at Qdisc

● Old problem
● ENOBUFS return code to sendmsg/to
● We yield and get another ENOBUFS

– We see worst case between 40-60% drops depending on
processor capacity

● Possible solution
● The qdisc code already knows when space becomes

available
● The caller could register for async notification when

space becomes available
– Playing around with a couple possible approaches

Revisiting Busylock

● An improvement, but locks are bad for you
● The Cache-pingpong Express Train
● Recent studies have shown cache hits could be

nastier than local memory trips
● Own analysis looking at various cache coherency

approaches
– cache traffic increases exponentially with number of

contending cpus
– Memory trips increase only linearly

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

