JIT BPF

* Optimized code (exec time, small size)
 Only on x86_64 [but ports should be easy]

* Might be hard to debug

* To experiment : Avoid function calls to get
packet payload -> inline the fast path (when
accessing bytes in skb head)

 How about using JIT technique for main
iptables loop ?

JIT {ip|ip6|...}tables

* Only one copy of 'code’, shared by all cpus
* Might give even smaller '‘code’' on UP :

* (One iptable entry minimum size being 156
bytes! [no match, no target])

* Packet/bytes counters using percpu data [one
instruction on x86_64 with %gs prefix, two
instructions on 1386 with %fs prefix]

RTNL/(Network BKL) can be bad

 RTNL + synchronize rcu() is bad

* Device dismantle needs synchronize rcu() and
rcu_barrier()

 Some guys want to create/delete hundred
devices per second.

» Expedited rcu not always a solution

« — \Work queue to perform the final work, and let
the rtnl being released ASAP.

o rtnl_trylock() is horrible

UDP improvements

* |netpeer scalability improvements (commit
4b9d9be839 inetpeer: remove unused list),
thanks to report from Andi Kleen and Tim Chen

with their benchs on 40 core machine (80
threads)

* Followed by commit 2b77bdde9 (inetpeer:
lower false sharing effect)

UDP transmit,

 Still we bounce on dst refcount badly on xmit path on
memcached workload [many threads sending UDP
messages to single destination |]

— allow small frames (<= 256 ?) being copied from
User to Kernel first, then perform RCU route lookup to
get dst, and dont change dst refcount.

« Minimal changes using set fs(KERNEL DS) trick,
building on stack iov.

« Adds a copy, but cache hot copies are not that bad.

Packet schedulers

Bufferbloat hype made some bugs surface (ECN related :
IP defrag bug, ipv6 bug)

New packet schedulers (SFB, CHOke, SFB)

SFQ improvements (IP frag problem with Congestion
Notification)

pfifo_fast default is a problem, and few admins are aware
of possible starvation caused by a single tcp flow (with
crazy sending window, and SuperPacket { aka TSO})

Packet schedulers (cont)

« Remove spinlock limitation on trafic rate limiting (especially
on multiqueue devices), using batches

« Use percpu counters for packet/bytes values, for example in
tc filters [they should run concurrently on all cpus]

« est_timer() used to compute rate estimations, would run
slower and would need to run in process context instead of
softirg (workqueue instead of timer)

Try to reduce percpu needs

 More and more cpus — we should use percpu
data only where really needed

* MIB now use one table instead of two
(USER/BH), finally !

 Some rarely used counters should use plain
atomic_long_t (as done with ICMP counters in
Ipvo, as they are per device)

Adaptative refcounter

« Goal : reduce dst refcount contention. Could be used on netdevice
refcounts too.

« At creation time, an object without percpu data

« { atomic _t refcnt
int ___percpu *pcpurrefs ;
int lastcpu ;
iInt cpumismatch_count ;
b
« If number of cpu mismatches reaches a limit, expand the refcounter
to a full percpu structure.

As this calls __alloc_percpu(), this can only be done from process
context, with no lock held (might be tricky)

« At refcounter dismantle phase, signal that pcpurrefs cannot be used
any more (all further changes must be done on shared refcnt atomic)

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9

