

JIT BPF

● Optimized code (exec time, small size)
● Only on x86_64 [but ports should be easy]
● Might be hard to debug
● To experiment : Avoid function calls to get

packet payload -> inline the fast path (when
accessing bytes in skb head)

● How about using JIT technique for main
iptables loop ?

JIT {ip|ip6|...}tables

● Only one copy of 'code', shared by all cpus
● Might give even smaller 'code' on UP :
● (One iptable entry minimum size being 156

bytes! [no match, no target])
● Packet/bytes counters using percpu data [one

instruction on x86_64 with %gs prefix, two
instructions on i386 with %fs prefix]

RTNL/(Network BKL) can be bad

● RTNL + synchronize_rcu() is bad
● Device dismantle needs synchronize_rcu() and

rcu_barrier()
● Some guys want to create/delete hundred

devices per second.
● Expedited rcu not always a solution
● → Work queue to perform the final work, and let

the rtnl being released ASAP.
● rtnl_trylock() is horrible

UDP improvements

● Inetpeer scalability improvements (commit
4b9d9be839 inetpeer: remove unused list),
thanks to report from Andi Kleen and Tim Chen
with their benchs on 40 core machine (80
threads)

● Followed by commit 2b77bdde9 (inetpeer:
lower false sharing effect)

UDP transmit,

● Still we bounce on dst refcount badly on xmit path on
memcached workload [many threads sending UDP
messages to single destination]

→ allow small frames (<= 256 ?) being copied from
User to Kernel first, then perform RCU route lookup to
get dst, and dont change dst refcount.

● Minimal changes using set_fs(KERNEL_DS) trick,
building on stack iov.

● Adds a copy, but cache hot copies are not that bad.

Packet schedulers

● Bufferbloat hype made some bugs surface (ECN related :
IP defrag bug, ipv6 bug)

● New packet schedulers (SFB, CHOke, SFB)
● SFQ improvements (IP frag problem with Congestion

Notification)
● pfifo_fast default is a problem, and few admins are aware

of possible starvation caused by a single tcp flow (with
crazy sending window, and SuperPacket { aka TSO})

●

Packet schedulers (cont)

● Remove spinlock limitation on trafic rate limiting (especially
on multiqueue devices), using batches

● Use percpu counters for packet/bytes values, for example in
tc filters [they should run concurrently on all cpus]

● est_timer() used to compute rate estimations, would run
slower and would need to run in process context instead of
softirq (workqueue instead of timer)

Try to reduce percpu needs

● More and more cpus → we should use percpu
data only where really needed

● MIB now use one table instead of two
(USER/BH), finally !

● Some rarely used counters should use plain
atomic_long_t (as done with ICMP counters in
ipv6, as they are per device)

Adaptative refcounter

● Goal : reduce dst refcount contention. Could be used on netdevice
refcounts too.

● At creation time, an object without percpu data

● { atomic_t refcnt ;
 int __percpu *pcpurrefs ;
 int lastcpu ;
 int cpumismatch_count ;
} ;

● If number of cpu mismatches reaches a limit, expand the refcounter
to a full percpu structure.
As this calls __alloc_percpu(), this can only be done from process
context, with no lock held (might be tricky)

● At refcounter dismantle phase, signal that pcpurrefs cannot be used
any more (all further changes must be done on shared refcnt atomic)

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9

