
© 2011 Solarflare Communications, Inc.

Managing multiple queues:
affinity and other issues

Ben Hutchings - netconf 2011

© 2011 Solarflare Communications, Inc. 2

Naive affinity settings

● Multiqueue driver allocates an IRQ to handle completions from each
queue set (usually 1 RX and 1 TX)

● CPU selection for socket user, RX packet processing and TX
completions are independent:

● RX queue selection based on hardware flow hash

● TX queue selection based on different software flow hash.

● IRQ affinity initially unset. May be spread out by irqbalanced, but
without any understanding of multiqueue devices. Effective
scaling requires manual configuration.

● Descriptor and event rings on NUMA node near device. Reading
rings can require inter-node traffic.

● Software structures mostly allocated on NUMA node where probe
was scheduled. Do you feel lucky?

● RX buffers usually allocated in same context as completions for the
queue, on current NUMA node. This just works.

© 2011 Solarflare Communications, Inc. 3

Later refinements to affinity

● Sockets have affinity based on scheduling of user
thread; RX packet processing scheduled accordingly
(RFS)

● RX flow steering puts completions and buffers near
socket user (accelerated RFS; RX NFC/n-tuple)

● TX flow hashing can be overridden based on CPU (XPS)

● Driver can provide IRQ affinity hints which irqbalance
will follow; probably not a good idea

● TX queue NUMA affinity inferred from XPS settings and
used for qdisc allocation

● Mostly dependent on manual configuration;
disabled by default

© 2011 Solarflare Communications, Inc. 4

Simplifying affinity settings

Should be a simple way for administrator to set all affinities,
preferably working with existing userland tools.

1.Userland sets IRQ affinities and queues follow

● Accelerated RFS and proposed 'automatic XPS' infer
queue affinity like this

● Queue structures must not be reallocated automatically
if device is up, as it will interrupt traffic. But many/most
drivers free IRQs when device is down!

2.Userland sets queue affinities and IRQs follow

● Networking core and ideally userland will need to be
aware of queue-IRQ mapping

● IRQ subsystem does not allow kernel users to set affinity.
But we can set affinity hints.

© 2011 Solarflare Communications, Inc. 5

RX queue selection

● Default behaviour of most drivers:

● 1 IRQ and queue set per CPU (thread), within limits of device
and IRQ controllers

● RX flow hash spreads flows across all queues; therefore spreads
packet processing across all CPUs with IRQ directed at them

● Assuming IRQ affinity is spread out properly, this takes a little
time from every CPU which is fair but can be wasteful

● Where steering is available, maybe better to limit flow hash to
subset of queues?

● Most devices have an indirection table which can be used for
this (required by MS RSS spec)

● RT users don't want random flows interrupting RT threads
● RFS does a better job of assigning RX work to CPUs
● All queues still available to accelerated RFS and RX NFC

© 2011 Solarflare Communications, Inc. 6

Scaling policy

What could an administrator specify in a system policy
for network device scaling?

● May limit number of IRQs and queue sets per device
(absolute or n per package/core/thread)

● May limit number of RX queues to hash across

Networking core would calculate the actual numbers
for drivers.

If networking core sets IRQ affinity hints:

● Specifying scale based on topology results in hints
based on topology

● May specify global affinity mask for RX flow hashing;
all hints would be subsets of this

