Optimizing UDP for content delivery: GSO, pacing and zerocopy

Willem de Bruijn

willemb@google.com

Abstract

UDP is a popular basis for the experimentation with and rapid
deployment of new protocols. Experience shows a large gap in
cycle efficiency compared to in-kernel TCP.

This talk presents recent optimizations to the UDP stack that
narrow this gap. At the core are optimizations long avail-
able to TCP: segmentation offload, pacing and zerocopy. We
present the recently merged UDP GSO and SO_TXTIME in-
terfaces and discuss select implementation details. We also
review partial GSO as it fits in this context and discuss opti-
mizations that are in submission: UDP zerocopy transmit with
MSG_ZEROCOPY and UDP GRO.

Introduction

UDP is common in video streaming and other time critical
protocols for which timely unreliable delivery is a feature. It
is also uniquely positioned for broader experimentation with
and rapid deployment of novel higher layer protocols. It is
widely available across operating systems, requires no supe-
ruser privileges and is well supported in the network by mid-
dleboxes. Exposing only a thin unreliable datagram service
over IP allows varied application specific extensions.

A recent example of such a protocol is QUIC [1], a trans-
port layer protocol that combines reliable delivery and con-
gestion control with stream multiplexing, header compres-
sion, cryptography and low latency connection establishment.
QUIC is widely deployed at Google, serving over 35% of all
Google egress traffic [2]. Key to rapid deployment and itera-
tion has been being able to ship QUIC directly with applica-
tions, e.g., in the Chrome browser.

We have previously measured transmission over QUIC to
cost up to 3.5x the CPU cycles per byte versus transmission
over TCP [2]. QUIC is going through IETF standardization.
An obvious next step would be to write reimplement the pro-
tocol as a first class operating system primitive, in the kernel.
This would it offer tangible benefits in terms of cycle effi-
ciency.

A kernel implementation only improves this single proto-
col, ignoring many of the benefits of UDP. Instead, in this
paper we investigate improvements to UDP as a service that
benefits the wider ecosystem of established and future UDP
based protocols. We do focus on cycle efficiency and con-
tent delivery, with QUIC as the demonstration protocol and
Youtube streaming as the target use case. In this scenario, a

Eric Dumazet
edumazet@google.com

representative workload is a server that communicates with
tens of thousands of clients at time, sending a relatively low
rate stream of around 1 MBps to each.

The paper discusses the various relevant recent improve-
ments to the UDP send and receive paths. Specifically,
generic segmentation offload (UDP GSO) and partial GSO,
UDP zerocopy, earliest delivery time (EDT) scheduling with
SO_TXTIME and FQ and generic receive offload (UDP
GRO). We complete in Section by discussing how this af-
fects a QUIC server software architecture, comparing the pre-
viously outlined Google design [2] with one based solely on
UDP. The paper includes considerable work by people be-
sides the authors. We thank them in the acknowledgments
section at the end.

Efficiency

Some of the cycle cost in serving QUIC was due to inefficien-
cies in the application that are out of scope here. After those
are resolved, the remainder was about 2x cycle increase. This
is for the entire application, which indicates an even higher
cost for the transmit path in isolation. We investigated the
cost of serving over UDP vs TCP independent of QUIC with
a simple benchmark, udpgso_bench, which is available in the
kernel source tree. In short, a standard TCP configuration
sees a nearly 5x speed-up over UDP. Figure 1 shows the ex-
act numbers. We will return to these in more detail. See also
the appendix for test setup and details.

A cycle profile with perf-tools indicates no single obvi-
ous hotspot in the UDP path that explains the cost difference.
Instead, cycles accrue across the stack due to a much higher
number of stack traversals for the same number of bytes.

The main difference between the two protocols in this re-
gard is in TCP segmentation offload (TSO). Segmentation of-
fload allows the protocol stack to pretend that a network de-
vice can send a much larger packet than is actually supported
by the network path. This results in fewer network stack
traversal on transmission. The network device breaks apart
the large TSO packets down to MTU, replicates and fixes up
the network and transport headers. With TSO, the TCP stack
send packets of the maximum size allowed by the underlying
network protocol, 64 KB (including the network header for
IPv4, excluding the header for IPv6), to the device.

If the network card does not support TSO, the Linux kernel
stack can perform this operation just before passing packets

Gbps calls/s Mcycles/s Speed-up (%)
TCP 9.3 19040 2800 100
TCP gso LR 19040 1856 162
TCP tso LR 19040 618 487
UDP LR 812000 2801 107
UDP gso LR 18248 1727 174

Figure 1: Cycle cost of udpgso_bench_tx

to the device driver. This generic segmentation (GSO) layer
emulates NIC TSO. Doing so costs CPU cycles, but the sav-
ings are still considerable over passing MTU sized packets
through the entire stack (for a standard 1500B MTU). This
can easily be quantified for TCP, as TSO and GSO can be
individually enabled with ethtool -K. The first three rows
in Figure 1 compare TCP without segmentation !, with GSO
and with TSO. The cycle improvements are stark. GSO is
1.6x more efficient, TSO 4.9x. The abbreviation LR denotes
linerate for this 10Gbps machine. TCP without segmentation
does not saturate the link for this single threaded benchmark.

The cycle savings accrue across the stack, not only from
reduced system call invocation. To achieve the same for UDP,
then, it is not sufficient to batch system calls with sendmmsg.
The protocol needs true segmentation offload.

UDP GSO

UDP GSO, like TSO, makes it possible for applications to
generate network packets for a virtual MTU much greater
than the real one. Size is limited only by the underlying net-
work and link layer protocol bounds. Unlike TCP, UDP is
not a bytestream protocol, which does add an extra constraint.
Even without TSO, a process can send Megabytes of data to
a TCP socket in a single system call. This is not the case for
UDP, as it implicitly signals datagram message boundaries
through the send buffer size.

With UDP GSO, the length passed on send no longer
matches the expected length on the wire. This datagram gso
size now must be explicitly signaled with an extra argument
to the send call. The kernel constructs the larger datagram,
passes it to the UDP and IP layers wit this metadata attached.
The network device or GSO layer takes the large datagram,
splits up the payload in gso sized segments and replicates the
header. A key point is that the UDP and IP headers are easy
to replicate, bar for the UDP checksum field which the NIC
already computes.

UDP GSO is not the same as UDP fragmentation offload.
UFO also builds a larger than MTU datagram. But it does not
segment them into individual UDP datagrams. It sends the
single large UDP datagram on the wire as a sequence of IP
fragments. Fragmentation is not a feasible strategy for large
scale content delivery. Reassembly is expensive receive side
and resources are purposely limited to withstand fragmenta-
tion DoS attacks.

! After reverting commit 0a6b2aldc2a2 ("tcp: switch to GSO be-
ing always on")

Interface

The Linux kernel has a UDP GSO implementation as of ver-
sion 4.18 [3]. The application explicitly notifies the kernel of
the size of the datagram payload as it should appear on the
wire either through a socket option or passed along as con-
trol message with the sendmsg call, as shown in Figure 2.
For more examples, see the selftests in the kernel tree at
/tools/testing/selftests/net/udpgso.c.

To qualify for GSO a few prerequisites need to be met.

Size The gso_size shown in Figure 2 is a common choice,
based on the default Ethernet link layer data frame. The value
must always be chosen to build packets that fit the link layer
constraints indeed. It may have to be even smaller, if the route
or path MTU is lower than that of the device.

Without GSO, a UDP send call fails by default if it exceeds
path MTU - though this policy is configurable with socket op-
tion IP_MTU_DISCOVER. UDP GSO follows these same rules,
but applies them to parameter gso_size instead of the size of
the send buffer. Also, unlike for the TCP bytestream the total
send buffer must always fit in a single network packet. So it is
bounded by the maximum packet size of the underlying net-
work layer, 64KB including network header for IPv4, 64KB
excluding that header for IPv6.

The gso size parameter communicates the length of the
payload without network or transport layer headers. A
gso_size all the way down to 1 is a valid choice. A value of 0
effectively disables GSO. The sum of network header length,
UDP header length and gso size must be smaller than or equal
to MTU as defined by the constraints of IP_MTU_DISCOVER.

Segments The total number of segments is capped to
UDP_MAX_SEGMENTS to avoid having untrusted pro-
cesses be able to burst at unreasonable packet rates. This limit
is set to 64, the first power of two larger than the IP maximum
of 64KB divided by widely used Ethernet MTU of 1500.

Send buffer size must exceed gso_size. The GSO layer
rejects packets that are smaller than or equal to the gso size.
This is not a UDP specific constraint. It is not possible,
therefore, to simply set the socket option on a socket that
sends both gso and regular datagrams. In practice, pass-
ing gso_size as a control message is often preferable to
the socket option, also when multiplexing multiple flows
with possibly different path MTUs over a single uncon-
nected socket. The payload length must thus be greater than
gso_size. But it does not have to be an exact multiple. If it
is not, the last segment will be shorter than the others and its
IP and UDP length parameters adjusted as needed.

To see more edge cases that demonstrate these various con-
straints, see the previously mentioned selftest.

Checksum The GSO layer splits a large datagram into
MTU sized chunks and adjusts its network and transport layer
headers. For UDP, The source and destination port fields are
the same for all packets. The length is, too, except for the just

Socket option

int gso_size = ETH_DATA_LEN - sizeof(struct ipv6hdr) - sizeof(struct udphdr);

if (setsockopt(fd, SOL_UDP, UDP_SEGMENT, &gso_size, sizeof(gso_size)))

error(1l, errno, "setsockopt udp segment");

Control message

cm = CMSG_FIRSTHDR(&msg);

cm->cmsg_level = SOL_UDP;

cm->cmsg_type = UDP_SEGMENT;

cm->cmsg_len = CMSG_LEN(sizeof(uintl6_t));
*((uintl6_t *) CMSG_DATA(cm)) = gso_size;

sendmsg(fd, &msg, 0);

Figure 2: UDP GSO interface: pass gso size through setsockopt or cmsg

discussed case. The the checksum field, however, decidedly
is not.

UDP GSO requires a device with UDP checksum offload
support. This is the vast majority of modern hardware. If
checksum offload is not available, the operation could be
transparently performed in the GSO layer. But, it is gener-
ally much cheaper to compute the checksum simultaneously
while copying the data from userspace in send. With GSO,
this checksum would have to be thrown away and a new one
computed for each segment. Worse, at GSO time, the rele-
vant data may very well no longer be in the cache. To avoid
accidental performance degradation due to reloading of every
byte of payload, UDP GSO fails on a path without checksum
offload to nudge the user to revert to non-segmented send and
use the copy-and-checksum optimization.

Hardware Support

GSO does not reach the full potential of segmentation of-
fload, as the experiment in TCP GSO versus TSO demon-
strated. There is nothing precluding hardware support in
principle. UDP GSO specifies a single gso size for all seg-
ments. Subject to device descriptor specifics, this can rela-
tively easily be passed along to the NIC. Alexander Duyck
demonstrated hardware support within two weeks of UDP
GSO being merged, with an RFC patchset for the Intel ixgbe
driver [4]. The Mellanox mlx5 supports the feature in hard-
ware as of kernel 4.19 [5, 6]. The authors report numbers that
corroborate our results in Figure 1, a 2x improvement from
GSO, but another 3x improvement over that with hardware
UDP LSO (1.5x higher throughput at half the CPU cycles).

Partial GSO The main practical impediment to offload-
ing to hardware is handling the last segment [7]. Alexan-
der had previously already solved that in another context.
If the payload is not a multiple of gso size, then both net-
work header and udp header have to have their length fields
adjusted for this last segment. Alexander implemented an
elegant workaround for devices that cannot support this.
GSO_PARTIAL is a feature in the software GSO layer, so avail-

able regardless of hardware device. It detects when a UDP
GSO packet is not an exact multiple of gso size and en route
to a device that is capable of UDP GSO but not of updating
these fields. In that case, it splits the GSO packet in two pack-
ets, one GSO that is a multiple of its gso size and one regular
packet that already has its headers adjusted. Partial GSO does
not have to be configured. It is applied automatically depend-
ing on hardware features.

Zerocopy

Segmentation offload opens up another optimization that
TCP has had for a while, but was impractical for UDP at
MTU size. After applying GSO, the program has a much
clearer hot spot to further optimize. Profile data shows that
copy_user_fast_string is the hottest function in the trace
at 13% of all cycles.

Zerocopy transmission with MSG_ZEROCOPY [8] avoids
copying of payload. Instead, it pins pages and notifies the
process when data is no longer in use by the kernel. These
two operations per call are not free. For this reason the po-
tential for savings from copy avoidance grows as the bytes
per call increases. The first RFC patch sets included UDP
protocol support. This was dropped from the final version
because at 1500B MTU we saw no benefit. The UDP GSO
RFC patchset included an updated version of zerocopy sup-
port [9].

One caveat to copy avoidance is that cycle savings from
avoiding data loads and stores are highly dependent on
whether the data is in the cache. For modern protocols that
encrypt every byte, the data might be warm so that the cost
of the memory loads are low. On the store side, the opera-
tions may be non-temporal and not affect the cache hit rate
of other tasks. In practice we have seen benefits of zerocopy
even for protocols that encrypt, as the application transmit
path in these cases is often complex and the encryption oper-
ation does not happen necessarily at the time of the send call
(e.g., due to framing, pacing, and socket backpressure).

Figure 3 extends the comparison of TCP and UDP with
copy avoidance. It shows the relative time spent copying from
userspace without zerocopy as obtained with perf record,

Copy Zerocopy Speed-up

copy% Mcyc/s Mcyc/s %

TCP 4.35 2800 2800 100
TCP gso 10.3 1856 1704 109
TCP tso 26.7 618 425 145
UDP 3.11 2800 2800 100
UDP gso 13.4 1727 1690 102
UDP gso (CT) 21.2 1916 1694 113

Figure 3: Cycle cost with copy avoidance (Mcycles/s)

the total cycles spent without zerocopy and the total cycles
with zerocopy. These are cpu-wide cycle measurements that
include all kernel processing (-a -C 5). A profile of just the
process cycles would make copy cost seem larger than it is
end-to-end, especially with such a minimal benchmark appli-
cation. Copy avoidance is indeed not effective for UDP with-
out GSO. The payload is too small to warrant the extra pin-
ning and notification cost. This does not change considerably
with UDP GSO for this benchmark. But this is to be expected,
as it reuses the same send buffer over and over again. Run-
ning the test with a cache thrashing (CT) variant that rotates
buffers better demonstrates the gains when copying cold data.
Copy time goes up from 13% to 21%. As expected, in copy
mode, so does the total cycle cost. With zerocopy, it stays flat
— and relative improvement increase from 2% to 13%. TCP
can send even larger blocks than 64KB at a time to further
amortize the notification cost. UDP cannot, so these numbers
may or may not show the upper bound on benefits from zero-
copy. It depends on how much higher copy overhead can be
than 21%. The difference in time spent in copying between
TCP GSO and TCP TSO indicates potential higher savings
for UDP with full hardware segmentation offload, too.

Pacing

Segmentation builds a train of packets and sends it out at
once. In the extreme case, 64 segments are sent together
where they previously may have been spaced out simply by
the latency incurred in the application and kernel transmit
paths for each datagram.

Even for a relatively low rate flow, bursts can cause queue
overflow in routers, as the rate is high at small timescales. In
time sensitive protocols, this lowers service quality as packets
are dropped. For reliable delivery like QUIC, it adds network
load due to retransmissions. These also add CPU load, negat-
ing some of the gains of segmentation offload.

Effective delivery requires pacing of a flow to its intended
delivery rate even at small time scale. The delivery rate is
generally chosen by the congestion control algorithm. Linux
exposes the SO_MAX_PACING_RATE socket option to further
bound this value for pacing purposes. Userspace protocols
on top of connected UDP can also use the interface, in which
case it bounds the rate regardless of how quickly the process
inserts data with send calls. Pacing requires a queuing disci-
pline that supports the feature, like Fair Queue (FQ).

Batch size | CPU time % Loss %
1 100 100
2 92 103
4 88 110
8 84 117

Figure 4: Netperf throughput as a function of send buffer size

Earliest Departure Time The socket option equates a
socket with a flow to pace and thus works only for con-
nected sockets. Protocols that multiplex flows over uncon-
nected sockets, like QUIC, need a more fine grained mech-
anism. Kernel 4.19 acquired such a fine-grained time-based
packet scheduling feature, SO_TXTIME [10] [11]. With this
socket option, applications can pass a timestamp alongside
data with control message SCM_TXTIME. The option encodes
a 64-bit deadline in nanoseconds. Again, a qdisc has to be
installed that understand the timestamp. The TBS qdisc is
one option. FQ is another, though as of the time of writing it
does not support the feature for unconnected sockets yet. The
meaning of the deadline depends on flag SCM_DROP_IF_LATE.
For the purpose of pacing, the flag is left disabled. In this
mode, the timestamp is interpreted as the datagram’s earliest
departure time (EDT).

Kernel pacing saves cycles and decreases jitter compared
to pacing in the application. Furthermore, SO_TXTIME was
developed with full hardware offload in mind. A timing
wheel [12] based approach to earliest deadline scheduling
was previously presented in Carousel [13] in a software NIC.
The SO_TXTIME patchset includes hardware offload support
for the Intel igb driver.

Small flows Pacing limits individual flows’ delivery rates.
It works well for high rate flows, but the highly parallel
server workload described in the introduction requires closer
scrutiny. It is generally implemented at jiffy, or 1 millisec-
ond, resolution (for HZ=1000). The example workload sends
1 MBps per connection, so one Kilobyte per interval. This is
less than one segment, or below the threshold for achieving
any batching benefits from segmentation offload.

One solution is to increase the interval, effectively allow-
ing a slightly higher rate of bursting. Even without GSO this
can noticeably reduce cycle cost through a reduction in timer
interrupts. A preliminary investigation is shown in Figure 4.
That compares CPU time and loss rate for various amounts
of burstiness relative to a baseline without bursting. This was
measured while sending normal datagrams. Both segmenta-
tion and pacing offload are disabled.

The relative loss rate is significant, but comes from a small
base. These numbers hint that a segmentation offload with
interval of 8 msec and gso_size of up to 8 may be a rea-
sonable trade-off. Increase them both further and qualitative
measurements of the video stream may start to be impacted.

Ideally, segmentation offload size and pacing can be con-
figured fully independently. That will require a mechanism
to specify and enforce different delivery times for constituent
segments of a GSO datagram. This remains future work.

UDP GRO

Segmentation offload generates trains of packets. Which per-
mits an analogous optimization on the receiver side, to con-
solidate multiple MTU sized packets into fewer larger ones.
Large receive offload (LRO) does exactly this for TCP in
hardware, and generic receive offload (GRO) in software.

The effectiveness of both depend on the length of packet
trains. These are attenuated by pacing, as just discussed, as
well as by the vagaries of queuing in the network. High rate,
short distance use cases have a high chance of temporal lo-
cality. Due to batching within the base station, so do wireless
connections. These environmental constraints apply equally
to UDP as TCP. The benefits to WAN-facing servers are less
clear and require more experimental data.

If carefully implemented, the combination of GRO and
GSO reconstructs the exact segments as they arrived. This re-
duces protocol stack traversal with no discernible difference
on the wire — apart possibly from packet (s)pacing, but that
is affected by any router, segmenting or not. Generic receive
offload is the missing piece of the stack. It is under active
development as of writing.

Local Delivery Transparent delivery to a local socket re-
quires breaking large payloads up back into their discrete
segment sizes before passing to recv. Delivering one data-
gram on each recv call can be implemented by carving off
gso_size from a GRO skb at the head of the receive queue.
This complicates an already complex UDP receive path (e.g.,
with peek at offset) that has had its fair share of non-trivial
race conditions. An alternative is to reuse the transmit seg-
mentation path: segment the large packet just before enqueue.
This clearly adds more overhead, not in the least from allo-
cation of each of the segment skbs. It is not automatically a
win over simply receiving each datagram without GRO, then.
Even so, preliminary results are encouraging.

Transparent delivery is not necessarily the goal, though.
More cycle efficient than either implementation is to send
up the large payload as a whole. Paolo Abeni recently sent
a second version of his RFC patchset that implements this
approach [14] while being backward compatible with sock-
ets that do not support GRO. It performs a socket lookup
at GRO, similar to UDP tunnels, and performs GRO only
if a socket has registered as GRO-capable. Sockets regis-
ter interest in receiving coalesced datagrams with setsockopt
SOL_UDP/UDP_GRO. If such a socket is found during GRO, the
coalesced packet is sent to the process as is, with a control
message to signal gso_size.

The socket lookup can be avoided if the segmentation ap-
proach proves cheaper than regular send. This requires more
experimental data. One variant that may reduce segmentation
cost is building chains of regular skbs at GRO time instead
of a single skbuff that consists of page fragments. These are
much simpler to segment later on, as they are just a linked list
of segment-sized items. Steffen Klassert has presented such
a solution [15].

These GRO optimizations are on top of another recent
patchset by Edward Cree that independently increases receive
path throughput by up to 25% [16]. That listify patchset also

Gbps calls/s Mcycles/s Speed-up (%)
UDP 798 568000 3564 100
UDPgro | 1022 40250 2498 182

Figure 5: Cycle cost of udpgso_bench_rx

builds chains of skbs. It then calls the various stages of the
receive path on a chain of packets at a time instead of travers-
ing the entire path for each packet in order. This increases
instruction locality and thus i-cache hitrate. Unlike for GRO,
the listified skb chains need not take the exact same path, let
alone have the same destination socket. The features are com-
plementary.

Evaluation Figure 5 shows very preliminary numbers from
an earlier UDP GRO RFC patchset [17]. The number of sys-
tem calls —and with that receive stack traversals— is reduced
14-fold while serving 1.28x more traffic. When looking at
cycles and taking into account the higher delivery rate, ef-
ficiency is up 1.8x. We do need to bear in mind that these
results are obtained under ideal circumstances, where UDP
GSO generates a train of packets that arrives at the receiver in
order, without drops, delays or interleaving packets. Again,
conditions across the WAN are unlikely to be as favorable.
Also, this test purposely avoids copying the data, which can
dwarf the cost of the receive path. On the other hand, the 14x
reduction in calls is lower than the 45x theoretical max.

QUIC Server Architecture

How do these optimizations affect production servers? We
started this paper with a representative workload, a video
server streaming tens of thousands of moderate streams at a
time. This QUIC server spends a significant portion of its
time in UDP networking.

The legacy architecture, previously described in detail [2],
optimizes for cycle efficiency at the cost of non-trivial com-
plexity. For reception, it employs a hybrid path of packet
and udp sockets. Reading datagrams early in the receive path
from packet sockets proved about 10% cheaper than going
through the full protocol stack. This is with PACKET_RX_RING
and a non-public PACKET_INTERCEPT patch that drops the
packet in the kernel once accepted by a packet socket. A
modern stack would use the newer AF_XDP sockets for this
purpose. The packet sockets have a BPF filter that explicitly
excludes fragments: IP defragmentation is a non-trivial, secu-
rity sensitive task [18], so not duplicated in userspace. These
fragmented packets are passed through the kernel IP stack to
UDP sockets. Both packet sockets and UDP sockets are par-
allelized as their peak load can exceed a single CPU core’s
capacity. A rule of thumb is one socket per core. Traffic is
split between packet sockets with BPF fanout, UDP sockets
use SO_REUSEPORT BPF. A benefit of BPF is that selection can
be based on QUIC connection ID, which remains stable even
with connection hand-off between networks. All these fea-
tures require superuser privileges, at least on process start-up.

The transmit path is slightly less complex. It also eschews
UDP sockets. In this case, in favor of SOCK_RAW sockets.

These offer much of the benefit of packet sockets in terms of
both performance and protocol configuration such as DSCP,
without the complexity of having to maintain ARP and ND
state in userspace. Experiments showed that the route lookup
cost was not significant enough — even though the routes are
not cached in this case. Packet sockets with PACKET_TX_RING
were not significantly cheaper. Multiplexing many flows over
few raw or unconnected sockets precludes offloading of pac-
ing to the kernel with SO_MAX_PACING_RATE. That works only
for connected sockets, where a socket implies a single flow
and rate. As a result the server paces in userspace, with the
jitter and cycle cost that entails.

This design is for the pure Linux kernel transmit path. It
does not take into account a variant with the software NIC de-
scribed in the Carousel paper [13], which uses shared mem-
ory and page pinning. Such bypasses are out of scope and,
with a competitive kernel path, not needed.

New Design Some of the presented interfaces are very new.
The new server architecture, as a result, is also a work in
progress. We do not have detailed application level perfor-
mance numbers at this point. Given the 2x transmit improve-
ment in UDP GSO microbenchmarks and this workload be-
ing strongly skewed towards transmit, we do expect that we
can do away with the entire complicated scaffolding in both
receive and transmit paths and see a major reduction in cy-
cles/Mbps.

The new design uses exclusively UDP sockets for both re-
ceive and transmit. It no longer requires superuser privileges.
Receive sockets continue to use reuseport. Send sockets are
still unconnected to save socket overhead at tens to hundreds
of thousands of flows. Pacing is offloaded to the FQ qdisc
with SO_TXTIME. Sufficiently large payloads are passed with
MSG_ZEROCOPY flag.

As pointed out before, the goals of pacing many low rate
flows at msec resolution and building large datagrams for
GSO and zerocopy are somewhat at odds. The most pressing
future work is fine-grained pacing of constituent datagrams
within GSO segments. Hardware crypto offload is another.
Finally, it is worth investigating whether more than 64KB can
be passed per call, further increasing gains from zerocopy.
This would imply building more than one GSO datagram per
call.

Summary

Taken together, segmentation offload, zerocopy and pacing
can considerably decrease cycle cost of serving content over
UDP to make it approximate the efficiency of TCP, which
has long had these features. UDP GSO shows a compara-
ble gain to TCP GSO, near 2x. Smooth delivery with pacing
lowers cpu overhead compared to userspace pacing and im-
proves goodput by lowering drops. Zerocopy further avoids
overhead from copying, 13% in the example workload. Full
application results are still out, but we are confident that these
improvements allow us to serve content with QUIC at consid-
erably lower cycle overhead using a standard UDP datapath,
compared to the earlier privileged packet socket based stack.

Acknowledgments

The end-to-end optimization of the UDP stack involves work
from many people besides the authors. We have already men-
tioned Alexander Duyck’s work on UDP and partial GSO [7]
and ixgbe NIC support [4]. Boris Pismenny submitted UDP
GSO support to the Mellanox mlx5 driver [5] and presented
that work at the Netdev 0x12 conference [6]. SO_TXTIME is
the work of Jesus Sanchez-Palencia [10]. Paolo Abeni imple-
mented UDP GRO [14] and before that has made many per-
formance improvements up and down the UDP stack. Steffen
Klassert has presented a generic GRO mechanism based on
frag_list that can also be applied to UDP [15]. Edward Cree
implemented skb listification independent of GRO [16]. The
authors also want to thank Ian Swett, Grzegorz Calkowski
and Bin Wu at Google for adapting the Google serving in-
frastructure to these features and evaluating them. That work
is ongoing.

References

[1] Adam Langley, Alistair Riddoch, Alyssa Wilk, Anto-
nio Vicente, Charles Krasic, Dan Zhang, Fan Yang, Fe-
dor Kouranov, Ian Swett, Janardhan Iyengar, Jeff Bai-
ley, Jeremy Dorfman, Jim Roskind, Joanna Kulik, Patrik
Westin, Raman Tenneti, Robbie Shade, Ryan Hamilton,
Victor Vasiliev, Wan-Teh Chang, and Zhongyi Shi. The
quic transport protocol: Design and internet-scale de-
ployment. SIGCOMM ’17. ACM, 2017.

[2] Jana Iyengar and Ian Swett. Quic: Design
and internet-scale deployment. talk at netde-
veconf Ox12, Montreal, July 13th, 2018, 2018.

https://netdevconf.org/Ox 12/session.html?developing-
and-deploying-a-tcp-replacement-for-the-web.

[3] Willem de
email thread,

netdev
2018.

Bruijn.
April

udp gso.
26th, 2018,

http://patchwork.ozlabs.org/project/netdev/list/?series=41202 &state=

[4] Alexander Duyck. ixgbe/ixgbevf: Add sup-
port for udp segmentation offload. net-
dev email thread, May 4th, 2018, 2018.
https://patchwork.ozlabs.org/patch/908396/.

[5] Boris Pismenny. net/mlxSe: Add udp gso sup-
port. netdev email thread, June 28th, 2018, 2018.
https://patchwork.ozlabs.org/patch/936521/.

[6] Boris Pismenny. Udp segmentation offload. talk
at netdevconf Ox12, Montreal, July 13th, 2018,
2018. https://netdevcont.org/0x12/session.html?udp-
segmentation-offload.

[7]1 Alexander Duyck. Gso: Support partial segmentation
offload. netdev email thread, April 11th, 2016, 2016.
https://patchwork.ozlabs.org/patch/608629/.

[8] Willem de Bruijn. msg_zerocopy. net-
dev email thread, August 3rd, 2017, 2017.
https://netdevconf.org/2.1/session.html?debruijn
and https://lwn.net/Articles/726917/.

[9] Willem de Bruijn. udp: zerocopy. net-
dev email thread, April 17th, 2018, 2018.
http://patchwork.ozlabs.org/patch/899630/.

[10] Jesus Sanchez-Palencia. Scheduled packet transmis-
sion: Etf. netdev email thread, July 3rd, 2018, 2018.
https://lwn.net/Articles/758592/.

[11] Jonathan Corbet. Time-based packet transmission,
2018. http://lwn.net/Articles/748879/.

[12] G. Varghese and T. Lauck. Hashed and hierarchical
timing wheels: Data structures for the efficient imple-
mentation of a timer facility. In Proceedings of the
Eleventh ACM Symposium on Operating Systems Prin-
ciples, SOSP °87. ACM, 1987.

[13] Ahmed Saeed, Nandita Dukkipati, Vytautas Valancius,
Vinh The Lam, Carlo Contavalli, and Amin Vahdat.
Carousel: Scalable traffic shaping at end hosts. In Pro-
ceedings of the Conference of the ACM Special Interest
Group on Data Communication, SIGCOMM *17. ACM,
2017.

[14] Paolo Abeni. udp: implement gro support.
netdev email thread, October 19th, 2018, 2018.
https://lwn.net/Articles/768995/.

to record function traces. Segmentation offload was con-
figured with ethtool -K tso $TSO gso $GSO after reverting
commit Oabb2aldc2a2 ("tcp: switch to GSO being always
on").

[15] Steffen Klassert. http://patchwork.ozlabs.org/project/netdev/list/?series=65305,

2018.

[16] Edward Cree. Handle multiple received packets at
each stage. netdev email thread, July 2nd, 2018, 2018.

http://patchwork.ozlabs.org/project/netdev/list/?series=53249 &state=*.

[17] Willem de Bruijn. udp and configurable gro. net-
dev email thread, September 14th, 2018, 2018.

http://patchwork.ozlabs.org/project/netdev/list/?series=65763 &state=*.

[18] NIST. Cve-2018-5391. CVE-2018-5390, 2018.

Appendix A: Test Setup

The results were obtained on a pair of dual-socket ma-
chines with two Intel Xeon E5-2696 18-core, 36-hyperthread
chips each, connected over 10Gbps Ethernet using Mellanox
ConnectX-3 NICs.

The kernel was davem-net-next/master including v4.19-
rc8. Each machine was booted with idle=halt to reduce jit-
ter, had a single network queue pair (ethtool -L eth® rx
1 tx 1) with interrupts pinned to the same core as the test
program, cpu 5.

The test programs are in the kernel sources at
tools/testing/selftests/net/udpgso_bench_(rt)x.

The transmit command was run as

./udpgso_bench_tx -C 5 -4 -D ${DST_IP} -1 5 ${OPT}

where options are -t for TCP, -z to enable copy avoidance, - ¢
for cache thrashing mode and -S for UDP GSO. The receive
command is

./udpgso_bench_rx -C 5 ${OPT}

where options are -t for TCP and -g for UDP GRO. The tests
were evaluated with perf-tools, using
perf stat -a -C 5 -e cycles -- ${CMD}
to measure cycles and

perf record -a -C 5 -e cycles -- ${CMD}

