- Update on Cilium with tcx & netkit
- Revamping global socket iterator

Daniel Borkmann (Cisco)

tcx: What’s done

tcx datapath infra was merged and released with 6.6 kernel

static __always_inline struct sk_buff x
sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
struct net_device *orig_dev, bool *another)
{
struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress); (”bpf mprog” array)
enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS; —

int sch_ret;

tc {ingress,egress} 7

if (lentry)
return skb;

if (xpt_prev) {
*ret = deliver_skb(skb, *pt_prev, orig_dev);
*pt_prev = NULL;

}

qdisc_skb_cb(skb)->pkt_len = skb->1len; TCX—NEXT TCX—DROP
tcx_set_ingress(skb, true); L_

if (static_branch_unlikely(&tcx_needed_key)) { BPF prog

sch_ret = tcx_run(entry, skb, true);
if (sch_ret != TC_ACT_UNSPEC)
goto 1ingress_verdict;
}
sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
ingress_verdict:

switch (sch_ret) {
case TC_ACT_REDIRECT:

/* skb_mac_header check was done by BPF, so we can safely

https://lore.kernel.org/all/20230719140858.13224-1-daniel@iogearbox.net/

tcx: What’s done

cilium/ebpf support was merged (thanks to Lorenz!)

- Goal: BPF program management for direct or link-based attachment

link: add TCX support #1163

IRV - M Imb merged 3 commits into cilium:main from mb:link-tcx |'E| on Nov 17, 2023

L) Conversation 19 -0- Commits 3 Fl Cchecks 13 Files changed 18

Imb commented on Oct 10, 2023 - edited ~

>

internal/sys: generate tcx wrappers
Signed-off-by: Lorenz Bauer <lmb@isovalent.com>

link: add TCX support

Add support for the new tcx link type. This supersedes netlink based
attachment to TC ingress and egress hooks. It is the first user of the
bpf_mprog API in the kernel, which allows attaching multiple programs to the

e e R R e M e e R R e T el S 3

Member

i)

i)

https://github.com/cilium/ebpf/pull/1163

netkit: What’s done

TCP stream single flow Pod to Pod over wire, 8k MTU (higher is better)

[veth + upper stack forwarding [veth + BPF host routing [netkit + BPF host routing

[host (baseline/best case) Iatency as
156,500 tput as high as host low as host
— Latency in usec Pod to Pod over wire (lower is better)
@ veth + BPF host routing [netkit + BPF host routing || host (baseline/best case)
50,000 22
25,000 o

Mbps

MIN P90 P99

netkit: What’s done

netkit driver was merged and released with 6.7 kernel

CONFIG_NETKIT=y (bool) is set by default in latest Ubuntu 24.04 LTS !

Introducing Kernel 6.8 for the 24.04 Noble Numbat Release

M Kernel kernel, development

% arighi © 54 Jan27
The current tentative target kernel for the upcoming Ubuntu release 24.04 (Noble Numbat) is 6.8.
Deadlines (Noble Numbat Release Schedule 149):

o @ March 28, 2024 (UTC) : kernel feature freeze

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/drivers/net/netkit.c?id=35dfaad7188cdc043fde31709c796f5a692ba2bd
https://discourse.ubuntu.com/t/introducing-kernel-6-8-for-the-24-04-noble-numbat-release/41958

netkit: What’s done

iproute2 support was merged and released with iproute2 v6.8.0

- Goal: Basic device setup and introspection support

ip link add type netkit

ip -d a

[ess]

7: nk0O@nkl: <BROADCAST,MULTICAST,NOARP,M-DOWN> mtu 1500 gdisc noop state DOWN group default glen 1000
link/ether 00:00:00:00:00:00 brd ff:ff:-ff:ff:ff:ff promiscuity 0 allmulti 0 minmtu 68 maxmtu 65535

netkit mode 13 type peer policy forward |numtxqueues 1 numrxqueues 1 [...]

8: n nkoO: 7 7 ;M=DOWN> mtu 1500 gdisc noop state DOWN group default glen 1000
link/ether 00:00:00:00:00:00 brd ff:ff:£ff:£ff:ff:ff promiscuity 0 allmulti 0 minmtu 68 maxmtu 65535

netkit mode 13 type primary policy forward pumtxqueues 1 numrxqueues 1 [...]

- Support base setup and delegate BPF program management to applications (via libbpf, ebpf-go)

https://git.kernel.org/pub/scm/network/iproute2/iproute2.git/commit/?id=e4956e7f1fd9bb8d8bf74947c32ac381e19b96ec
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=05c31b4ab205

netkit: What’s done

vishvananda/netlink support was merged (thanks to Bytedance!)

- Goal: Native iproute2 equivalent for Go, that is, basic device setup and introspection support

support netkit #930

)Vl aboch merged 1 commitinto vishvananda:main from chent1996:dev/netkit1 (5 on Nov 27, 2023

&9 Conversation 6 -o- Commits 1 [l Checks 2 Files changed 4

chent1996 commented on Nov 27, 2023 Contributor

this PR add support to manage a netkit device in Golang

authored-by: tangchen tangchen.1@bytedance.com

®) (& 1

https://github.com/vishvananda/netlink/pull/930

netkit: What’s done

cilium/ebpf support was merged (thanks to Datadog!)

- Goal: BPF program management for direct or link-based attachment, same look & feel as tcx

Add support for netkit device #1257/

bad VGl ti-mo merged 1 commit into cilium:main from hemanthmalla:netkit (3 5 days ago

L) Conversation 20 -0- Commits 1 Fl Checks 14 Files changed 9
;%ﬂ hemanthmalla commented on Dec 6, 2023 - edited + Member
>

Adds support for attaching bpf programs to netkit devices using bpf links.
Generated code is currently based on 6.7-rc4

TODO :

Decide on a way to create netkit device in Cl for testing.

Re-gen code once 6.7 is out and validate for any changes.

®)

https://github.com/cilium/ebpf/pull/1257

netkit: What’s done

Fixing networking stats for netkit in general and for peer-redirection

- Goal: Proper network stats accounting for cAdvisor for netkit and veth

From: Peilin Ye <peilin.ye@bytedance.com>

Traffic redirected by bpf redirect peer() (used by recent CNIs like Cilium)
is not accounted for in the RX stats of supported devices (that is, veth
and netkit), confusing user space metrics collectors such as cAdvisor [0],
as reported by Youlun.

- Fix is calling dev_sw_netstats_rx_add() in skb_do_redirect() and move netkit & veth to dev->tstats
- Guard if drivers implementing ndo_get _peer_dev and do not use dev->tstats
- Suggestion from Jakub Kicinski to move {l,t,d}stats allocation into net core

Patches: bpf redirect peer fixes, v3 (Daniel Borkmann, Jakub Kicinski, Nikolay Aleksandrov, Peilin Ye)

https://lore.kernel.org/bpf/20231114004220.6495-1-daniel@iogearbox.net/

netkit: What’s done

Fast-path optimising getting peer pointer from struct net_device
- Goal: Get rid of ndo_get_peer_dev entirely and add peer pointer to net_device (suggestion from Jakub Kicinski)

- The latter is only implemented by veth and netkit
- Helps performance for ingress direction due to the current indirect call in skb_do_redirect()

if (flags & BPF_F_PEER) ({
const struct net_device ops *ops = dev->netdev_ops;

if (unlikely(!ops->ndo_get peer dev ||
!skb_at tc_ingress(skb)))

goto-cut _dropn.
- T

dev = ops->ndo_get peer_ dev(dev);
tr—unttkerytidev—t
! (dev->flags & IFF_UP) ||
net_eqg(net, dev_net(dev))))
goto out_drop;
skb->dev = dev;
return -EAGAIN;

netkit: What’s done

Fast-path optimising getting peer pointer from struct net_device
- Goal: Get rid of ndo_get_peer_dev entirely and add peer pointer to net_device (suggestion from Jakub Kicinski)

- The latter is only implemented by veth and netkit
- Helps performance for ingress direction due to the current indirect call in skb_do_redirect()

if (flagé & BPF_F_PEER) { static struct net_device *skb_get_peer_dev(struct net_device xdev)

if (unlikely(!skb_at_tc_ingress(skb))) {
goto out_drop; const struct net_device_ops *ops = dev->netdev_ops;

dev = skb_get_peer_dev(dev);
if (unlik;%y(jzev Tl ()3 if (likely(ops->ndo_get_peer_dev))
return INDIRECT_CALL_1(ops->ndo_get_peer_de
! (dev->flags & IFF_UP) || : = = (nztkit péir azv aev;z
net_eq(net, dev_net(dev)))) FORTIFR UL - - ’
goto out_drop; } ’ ///77
skb->dev = dev;
dev_sw_netstats_rx_add(dev, skb->len); Possible given CONFIG_NETKIT is bool

return -EAGAIN;

Cilium & tcx: What’s done

Integration and merge for Cilium 1.16 with tcx complete

- Enabled by default for 6.6+ kernels, opt-out to old style tc possible
- Now all Cilium attachments are BPF link based (XDP, tcx, cgroups)!

loader: attach programs using tcx #30103

bad el ti-mo merged 6 commits into cilium:main from rgo3:tcx-for-cilium 33 2 weeks ago

) Conversation 55 -0 Commits 6 Fl Checks 43 Files changed 35

I —' rgo3 commented on Jan 4 - edited by ti-mo ~ Member

For more detailed descriptions, please refer to the individual commits.
On a high level, this PR:

¢ attaches TC progs using bpf_link (tcx) respecting upgrade and downgrade paths
¢ uses per-endpoint bpffs dirs, at e.g. [sys/fs/bpf/cilium/endpoints/12345/links/cil_to_container
¢ adds netns-driven tests for attaching skb progs via tcx

¢ adds a Helm flag (enableTXC) to optionally disable the feature to ease integration with other tools

Closes #27632

(©)

12

Cilium & tcx: What’s done

Seamless up/downgrade path:

// attachSKBProgram attaches prog to device using tcx if available and enabled,
// or legacy tc as a fallback.
func attachSKBProgram(device netlink.Link, prog xebpf.Program, progName, bpffsDir string, parent uint32, tcxEnabled bool) error {
if tcxEnabled {
// Attach using tcx if available. This is seamless on interfaces with .
// existing tc programs since attaching tcx disables legacy tc evaluation. Update Or attaCh tCX Ilnk
err := upsertTCXProgram(device, prog, progName, bpffsDir, parent) N’
if err == nil {

// Created tcx link, clean up any leftover legacy tc attachments.
<

if err := removeTCFilters(device, parent); err != nil { < Removal of old_style tc filters

log.WithError(err).Warnf("Cleaning up legacy tc after attaching tcx program %s", progName)
¥
// Don't fall back to legacy tc.
return nil
¥
if lerrors.Is(err, link.ErrNotSupported) {
// Unrecoverable error, surface to the caller.
return fmt.Errorf("attaching tcx program %s: %w", progName, err)

// tcx not available or disabled, fall back to legacy tc. .
if err := attachTCProgram(device, prog, progName, parent); err != nil {
return fmt.Errorf("attaching legacy tc program %s: %w", progName, err)

filters

_ Removal of tcx link

return fmt.Errorf("tcx cleanup after attaching legacy tc program %s: %w'", progName, err)

// Legacy tc attached, make sure tcx is detached in case of downgrade.
if err := detachTCX(bpffsDir, progName); err != nil {

return nil

Attachment of old-style tc

13

Cilium & tcx: What’s done

Attachment as “last”:

- Observability programs can attach in front of Cilium
- Cilium terminates tcx and does not enter into legacy tc

func attachTCX(device netlink.Link, prog *ebpf.Program, progName, bpffsDir string, attach ebpf.AttachType) error {
1, err := link.AttachTCX(link.TCXOptions{

Program: prog,
A Attachment of tcx link
Interface: device.Attrs().Index, .
Anchor: link.Tail(), 4e———-""'——_______———__——— at tail
1)
if err !'= nil {
return fmt.Errorf("attaching tcx: %sw", err)
}

14

Cilium & tcx: What’s done

Minor gotchas:

- Programs worked as-is, only tc_classid had to be zeroed explicitly in our code base
- With that all connectivity tests passed & we were able to merge it

@@ -19,6 +19,9 @@ bpf_clear_meta(struct __sk_buff xctx)
WRITE_ONCE(ctx—>cb[2], zero);

WRITE_ONCE(ctx—>cb[3], zero);
WRITE_ONCE(ctx->cb[4], zero);

/* This needs to be cleared mainly for tcx. x/
WRITE_ONCE(ctx—>tc_classid, zero);

15

Cilium & netkit: What’s ongoing

Integration and merge for Cilium 1.16 planned

- Goal: Last step of final Cilium integration via --datapath-mode={veth,netkit,netkit-12}

- netkit: L3 mode, default peer policy if no BPF is attached: drop
- netkit-12: Same as above but L2 mode

cilium: netkit support #32429

borkmann wants to merge 7 commits into main from pr/netkit2 (B3

L) Conversation 0 -0- Commits 7 [} Checks 45 Files changed 26

& borkmann commented last week - edited «

(still in draft, netkit-12 working)
for local netkit-12 testing, | have two wip patches to get connectivity tests passing :

e cilium/linux@ 205add4

Member

16

Cilium & netkit: What’s ongoing

“netkit-12” mode:

- Working but ran into two issues which needed netkit changes
- Setting mac addresses in the driver (easy, patch coming)

17

https://github.com/cilium/linux/commit/b53374dc910d143a66842921f3104f3602f9d82e

Cilium & netkit: What’s ongoing

“netkit-12” mode:

- Working but ran into two issues which needed netkit changes
- Setting mac addresses in the driver (easy, patch coming)

Use a Specific MAC Address for a Pod

Some applications bind software licenses to network interface MAC addresses. Cilium provides the ability to specific MAC addresses for
pods at deploy time instead of letting the operating system allocate them.

Configuring the address

Cilium will configure the MAC address for the primary interface inside a Pod if you specify the MAC address in the cni.cilium.io/mac-
address annotation before deploying the Pod. This MAC address is isolated to the container so it will not collide with any other MAC
addresses assigned to other Pods on the same node. The MAC address must be specified before deploying the Pod.

Annotate the pod with cni.cilium.io/mac-address set to the desired MAC address. For example:

apiVersion: v1

kind: Pod

metadata:
annotations:

cni.cilium.io/mac-address: €2:9c:30:38:52:61 <
labels:

app: busybox
name: busybox
namespace: default

18

https://github.com/cilium/linux/commit/b53374dc910d143a66842921f3104f3602f9d82e

Cilium & netkit: What’s ongoing

“netkit-12” mode:

- Working but ran into two issues which needed netkit changes
- Setting mac addresses in the driver (easy, patch coming)

if newEp != nil && newEp.Status != nil && newEp.Status.Networking != nil && newEp.Status.Networking.Mac != "" {
// Set the MAC address on the interface in the container namespace
if conf.DatapathMode !'= datapathOption.DatapathModeNetkit {
err = ns.Do(func() error {

return mac.ReplaceMacAddressWithLinkName(args.IfName, newEp.Status.Networking.Mac)

})
if err != nil {

return fmt.Errorf("unable to set MAC address on interface %s: %w'", args.IfName, err)
}

}
macAddrStr = newEp.Status.Networking.Mac

https://github.com/cilium/linux/commit/b53374dc910d143a66842921f3104f3602f9d82e

Cilium & netkit: What’s ongoing

“netkit-12” mode:

- Working but ran into two issues which needed netkit changes
- Setting mac addresses in the driver (easy, patch coming)
- Respecting setting skb->pkt_type from BPF program

20

https://github.com/cilium/linux/commit/b53374dc910d143a66842921f3104f3602f9d82e

Cilium & netkit: What’s ongoing

static netdev_tx_t netkit_xmit(struct sk_buff *skb, struct net_device xdev)

u M B -
netklt struct netkit *nk = netkit_priv(dev); pkt type =
enum netkit_action ret = READ_ONCE(nk->policy); =
Worki netdev_tx_t ret_dev = NET_XMIT_SUCCESS; PACKET_OUTGOING
- WorkKing const struct bpf_mprog_entry xentry;
- Setting struct net_device xpeer;
i = skb- ; kt _type = PACKET_HOST
- Respe(int len = skb->len; | PKT_typ _

(via skb scrubbing)

rcu_read_lock();
peer = rcu_dereference(nk->peer);

if (unlikely(!peer || !(peer->flags & IFE
Ipskb_may_pull(skb, —ALEN) ||
skb_orphan_fr Skb, GFP_ATOMIC)))
goto drop;

netkit_prep_forward(skb, !net_eq(dev_net(dev), dev_net(peer)));

skb->dev = peer; —
entry = rcu_dereference(nk->active);
if (entry)

ret = netkit_run(entry, skb, ret);
switch (ret) {

pkt_type = xyz

case NETKIT_NEXT: | pkt_type =

case NETKIT_PASS: < PACKET_OTHERHOST
skb->protocol = eth_type_trans(skb, skb->dev); -
skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); Causes L7 proxy test failures in

if (likely(__netif_rx(skb) == NET_RX_SUCCESS)) { Cilium! 21

https://github.com/cilium/linux/commit/b53374dc910d143a66842921f3104f3602f9d82e

Cilium & netkit: What’s ongoing

“netkit-12” mode:

- Working but ran into two issues which needed netkit changes
- Setting mac addresses in the driver (easy, patch coming)
- Respecting setting skb->pkt_type from BPF program (only relevant here in netkit-12)
- Options:
- In BPF program copy dst MAC to MAC of host device (retains PACKET_HOST)
- Do eth_type_trans() before invoking BPF, needs skb push/pull dance
- Detect that BPF program set pkt_type and override after eth_type_trans()
- Remove eth_type_trans() and push responsibility into BPF program,
just do skb pull in driver if BPF otherwise eth_type_trans() if no BPF

22

https://github.com/cilium/linux/commit/b53374dc910d143a66842921f3104f3602f9d82e

Cilium & netkit: What’s ongoing

“netkit” mode:

- Next step after netkit-12 is working

- Given L3 mode, BPF ARP responder needs to be compiled out

- Also all netkit-related MACs are zeroed (CNI records them, currently crashes with all-zero MAC - thd)
- From datapath PoV ETH_HLEN still remains at 14

- BPF remains the same, except for local Pod-Pod: s/bpf redirect_peer/bpf _redirect/

- Traffic to external must use bpf_redirect_neigh to populate L2

23

netkit: Future work

Experimenting with head/tailroom customization
- Goal: Being able to control dev->needed_headroom and dev->needed_tailroom

- Could benefit datapath performance under tunneling (vxlan, geneve) or encryption (wireguard)
- Potentially avoids pskb_expand_head() reallocation costs

- Idea: Have actual IFLA_HEADROOM and IFLA_TAILROOM attributes to dump and set on a device
- needed_{head,tail}room is by default 0, vxlan/geneve adjusts needed _headroom, wireguard also needed_tailroom
- Performance benefit: to be measured, references from old patches mention costs around 5% on realloc

netkit netkit
(primary) (peer)

needed_{head,tail}
room update then
propagates to peer. WIP: head/tailroom getter/setter in rtnetlink 24

https://lore.kernel.org/netdev/d8c2af0a398ed201064f39a348a55451bf34cd37.1512052527.git.pabeni@redhat.com/
https://github.com/cilium/linux/commits/pr/netkit2

netkit: Future work

Adding new ndo for setting dev->gso_{ipv4,} max_size
- Goal: Enabling BIG TCP for Pods without having to restart Pods

- Cilium agent is not able to exec into the Pod’s netns at runtime and mounting host procfs into Cilium container
is not desired (security reasons). Only the Cilium CNI plugin has access when setting up devices.

- Downside: Enabling BIG TCP on an existing cluster requires restart of application Pod
- New ndo for updating dev->gso_{ipv4,} _max_size in similar style as dev->needed_{head,tail}room would
be desirable.. e.g. picks max of primary/peer and applies it to both

netkit netkit
(primary) (peer)

/|

gso_{ipv4,}_max_size
update then
propagates to peer. 25

netkit: Future work

Implement ndo_change_mtu for netkit
- Goal: Changing MTU on primary without needing to change on peer

- Cilium agent is not able to exec into the Pod’s netns at runtime and mounting host procfs into Cilium container
is not desired (security reasons). Only the Cilium CNI plugin has access when setting up devices.

netkit netkit
(primary) (peer)

/|

Update MTU and
propagate MTU to
peer.

https://elixir.bootlin.com/linux/latest/C/ident/ndo_change_mtu

netkit: Future work

netkit and AF_XDP support

- Goal: 100G+ tput via AF_XDP with netkit without pulling in all the XDP infra into the driver. If these speeds can
be achieved, then it would be more advantageous than SRIOV given there is still possibility of visibility / policy
enforcement via BPF

Qemu now has native AF_XDP support:

"-netdev
af-xdp,id=str,ifname=name[,mode=native|skb][,force-copy=on|off][,queues=n][,start-queue=m][,inhibit=on|off][,sock-fds=x:y:...:z]

phys netkit netkit

(AF_XDP) E (primary) (peer) VM / Qemu (AF_XDP)

Pod
27

“Global socket iterator”

Problem: TCP/UDP connect binds VIP to backend, backend terminates, but application
does not receive feedback for it. Stays connected, worst case: backend IP reuse.

Last attempt presented in LSF/MM/BPF 2023:

- Part 1: socket destroy kfunc
- Part 2: Iterator over netns’es given Cilium agent does not have access to Pod netns’es

28

http://vger.kernel.org/bpfconf2023_material/aditi-bpf-sockets-iterator.pdf
https://lore.kernel.org/bpf/20230519225157.760788-1-aditi.ghag@isovalent.com/

“Global socket iterator”

In Cilium: Only solved in hostns today (via SOCK_DESTROY through DIAG infra)

Socket-Ib: Handle connections to deleted backends #25169

bRV aditighag merged 9 commits into cilium:main from aditighag:pr/aditighag/handle-stale-backend-connections (5 on Oc

LY Conversation 51 -0- Commits 9 El Checks 43 Files changed 11

@ aditighag commented on Apr 27, 2023 - edited ~ Member | *°*

This PR addresses a limitation with socket-Ib by handling stale connections to deleted service backends.

Background

When socket-Ib is enabled, traffic destined to service cluster IPs is load-balanced to service backends in the BPF cgroup
hooks at the socket layer (socket connect() aka fast path). When service backends are deleted, source application sockets
continue to send traffic to deleted backends (particularly, for connected UDP) as there are no hooks in the slow path (e.g.,
socket send() / receive() calls).

Fix

When backends are deleted, filter host-wide sockets based on socket cookie and destination ip/port, and destroy the
sockets connected to deleted backends. We use the SOCK_DESTROY capability in the kernel based on NETLINK_SOCK_DIAG
infrastructure. This requires kernel to be compiled with CONFIG_INET_DIAG_DESTROY config.

“Global socket iterator”

Problem: TCP/UDP connect binds VIP to backend, backend terminates, but application
does not receive feedback for it. Stays connected, worst case: backend IP reuse.

Last attempt presented in LSF/MM/BPF 2023:
- Part 1: socket destroy kfunc (Cilium upgraded to LLVM 17 few weeks ago, last blocker for kfuncs gone)
- Part 2: Iterator over netns’es given Cilium agent does not have access to Pod netns’es

Possible options:

- Plumb global flag for bpf_iter_attach_opts (LSF/MM/BPF 2023): not flexible enough

- Socket connect() call records {backendIP/port + socket address or cookie} -> {socket kptr} in hash map
and upon destruction we iterate hash map, fetch kptr and destroy socket

- Downside: needs to hold reference on socket
- Sockmap as storage which does not need to hold reference, but installs psock and might have other bumps

- Open-coded netns iterator and then we feed netns pointer into open-coded socket iterator

30

http://vger.kernel.org/bpfconf2023_material/aditi-bpf-sockets-iterator.pdf
https://lore.kernel.org/bpf/20230519225157.760788-1-aditi.ghag@isovalent.com/

netns iterator

Slow-path example upon backend termination event:

SEC("fentry/" SYS_PREFIX "sys_getpgid")
int foo_nested(void *ctx)

{
struct task_struct *cur_task = bpf_get_current_task_btf();
struct sock_common *skc;
struct net *net;
if (cur_task->pid == target_pid) {
bpf_for_each(net, net) {
bpf_for_each(tcp, skc, net) {
if (opf_get_socket cookie(skc) == cookie) {
bpf_sock_destroy(skc);
}
}
}
}
return O;
}

31

__bpf_kfunc int bpf_iter_net_new(struct bpf_iter_net *it)
{
struct bpf_iter_net_kern xkit = (void *)it;
struct net xnet, sktmp;

netns iterator

BUILD_BUG_ON(sizeof(struct bpf_iter_net_kern) > sizeof(struct bpf_iter_net));
BUILD_BUG_ON(__alignof__ (struct bpf_iter_net_kern) !=
__alignof__(struct bpf_iter_net));

struct bpf_iter_net { kit->len = kit->pos = 0;
__ub4 __opaquel3]; kit->net_array = NULL;
} __attribute_ ((aligned(8))); rcu_read_lock();
for_each_net_rcu(net) {
struct bpf_iter_net_kern { tmp = realloc_array(kit->net_array, kit->len, kit->len + 1,
struct net xknet_array; sizeof (xkit->net_array), GFP_ATOMIC, false);
netns_tracker ns_tracker; if (ttmp) {
u32 len; rcu_read_unlock();
u32 pos; goto unwind;

¥

kit->net_array = tmp;

kit->net_array[kit->len++] = get_net_track(net, &kit->ns_tracker,
GFP_ATOMIC);

} __attribute_ ((aligned(8)));

. }
Can be used in rcu_read_unlock();
sleepable / R 0

unwind:

non_SIeepabIe for (i = 0; i < kit—>len; i++)

progra mSs. put_net_track(kit->net_array[i], &kit->ns_tracker);
kfree(kit->net_array);

return —ENOMEM;

netns iterator

__bpf_kfunc struct net xbpf_iter_net_next(struct bpf_iter_net xit)

{

struct bpf_iter_net_kern xkit = (void x)it;
struct net xpos = NULL;

if (kit->pos < kit->len) {
pos = kit->net_array[kit->pos];
kit->pos++;

}

return pos;

__bpf_kfunc void bpf_iter_net_destroy(struct bpf_iter_net xit)

{

struct bpf_iter_net_kern xkit = (void x)it;
u32 i

for (1 = 0; 1 < kit->len; i++)
put_net_track(kit->net_array[il, &kit->ns_tracker);
kfree(kit->net_array);

33

netns iterator

Open TODOs:

net argument required to be trusted input argument:

bpf_for_each(net, net)
bpf_for_each(tcp, skc, net)

- Refcount handling is part of bpf_iter_net_new() / bpf_iter_net_destroy()
- Either bpf_iter_net_next() described as KF_RET_TRUSTED or we assign obj id as if it was refcounted (tbd)
- Still needs TCP/UDP socket iterator conversion to open-coded iterator as next step

34

ISOVALENT

Thank you! Questions?

github.com/cilium/cilium tcx BPF datapath

netkit devices

Open coded iterators for netns

http://github.com/cilium/cilium
https://lore.kernel.org/bpf/20230719140858.13224-1-daniel@iogearbox.net/
https://lore.kernel.org/bpf/20231024214904.29825-1-daniel@iogearbox.net/
https://github.com/cilium/linux/tree/pr/misc-patches

