Thrift RPC parsing using BPF

Seems like a good idea?

e Meta DC trafficis mostly RPC

e In-kernel consumers
o Offload hot work
o Dropworkearly
o Reduce overheads

e Produce/consume object streams instead of byte streams

Katran: BPF L4 LB

Backend Application

User Space

XDP Packet Processor

Linux Network Stack

Network Interface Controller

Kernel

Katran: BPF L4 LB

e Stateless
e Simple
o Hashing
o Read configuration
o Forwarding
e Complexity in userspace control plane
o Configuration
o Observability
o Health Monitoring
e Skips TCP stack, no unneeded copies

BMC: Memcache in-kernel cache

| Memcached | Memcached
——————— Socket API — i s 8
Network Network Network Network Network
stack stack stack stack stack
I BMC | [(BMC; |(BMC | | BMC | BMC
Network Network Network Network
driver driver driver driver > —]
Pl Rl SRl s B
RX RX RX RX [NIC]
core core core core

Network interface card

\J

Get UDP

(a) Lookup

BMC: Memcache in-kernel cache

Open source Memcache
Single server
GET requests use UDP
Bounded key + value lengths
Unknown configuration
o Is mitigations=on?
e https://www.usenix.org/conference/nsdi21/presentation/ghigoff

https://www.usenix.org/conference/nsdi21/presentation/ghigoff

BMC: Memcache in-kernel cache

e Thereisnomagic &
e Work needs to be done somewhere
e Where do efficiency wins come from?

Where does performance come from?

Avoid syscalls
Fewer context switches
Avoid copies
Skip networking stack
o Especially if request ends up being dropped in userspace
Reduce locking

Increase locality
e Specialisation - HW offloads

Why Meta Memcache might not work?

Ship of Theseus
Distributed service
Requests are RPC (Thrift) over TCP
Lots of userspace code
o ACL
o Logging
o Overload protection
o Justusual userspace spaghetti...

e Highrate of change

Why Meta Memcache might not work?

What might a hot in-kernel cache save?
o Two copies
o Keysharding, maybe
o Syscalls don't matter (for us)

But only for GET
Now need to de/serialise Thrift
And still have to do logging/etc

Have to always trade off complexity/effort vs efficiency gains
o Can this be solved with more $

Zero copy spoils the party?

Various mechanisms of doing ZC Tx

New, non-page flipping mechanism for doing ZC Rx incoming
Removes copies across kernel/user boundary

Lets userspace do the things that need doing anyway...

Header/data split

New zero copy features built on top of NIC HW header/data splitting
Headers go into kernel memory

Payload go into user/device memory

Set up HW Rx queues and fill them with DMA mapped user/device memory
NIC doesn't care what's in the Rx queue descriptors

What about large Thrift requests?

e Most of the request is an opaque data payload
e Destined for e.g. NVMe flash, GPU memory
e Can parsing and handling Thrift in-kernel enable us to intelligently split the payload out?

Thrift is inline

e Asopposed to split control/data plane
e Something needs to read L7 headers to decide what to do
e Kernel coulddo this:

o NIC -- DMA --> kernel memory

o Parse and handle Thrift protocol
o Kernel memory -- DMA --> PCle

BPF in io_uring

Patches from Pavel Begunkov
BPF_PROG_TYPE_IOURING

Register BPF programs w/ io_uring instance

Issue IORING_OP_BPF requests

Do (almost) anything io_uring can
https://github.com/isilence/linux/commits/bpf v3/

https://github.com/isilence/linux/commits/bpf_v3/

Zero copy spoils the party, again?

NIC -- DMA --> user memory
Parse and handle Thrift
User memory -- DMA --> PCle

Maybe save syscalls?
o But, they don't matter for us

(Bad) Idea coming?

e What if we can split L7 headers?

==

(Bad) Idea coming?

e What if we can split L7 headers?
e Using BPF?

==

(Bad) Idea coming?

e What if we can split L7 headers?
e Using BPF?
e Reallyreally early on?

==

o\

(Bad) Idea coming? !

= av

What if we can split L7 headers?

Using BPF?

Really really early on?

While still in NIC buffers, before DMAIing into Rx queue descriptors?

(Bad) Idea coming? !

= av

What if we can split L7 headers?

Using BPF?

Really really early on?

While still in NIC buffers, before DMAIing into Rx queue descriptors?
And then handle L7 headers, using BPF?

(Bad) Idea coming?

e NIC--DMA -->user memory
e Parse and handle Thrift
e User memory -- DMA --> PCle

==

o\

(Bad) Idea coming?

e NIC-- DMA --> user memory >
e Parse and handle Thrift
e User memory -- DMA --> PCle

==

o\

(Bad) Idea coming?

e Parse and handle Thrift
e L7 payload: NIC -- DMA --> user memory

o+—Usermemery—PDMA—PCle

Can it be done?

Different transport than TCP?

Able to reorder packets at the NIC buffer level

RPC protocol must support streaming deserialisation
Theright IPUs?

BPF CPUs?

Needs PSP?

More importantly: should it be done?

e We're never going to not use Thrift RPC
e We're also (probably) never going to rewrite services
o Wewill runPHRHack and Python until the very end
e Needs new SKU w/ IPU and widescale deployment
e Hardware projects take years and the world changes in the meantime
e Observability + security

More importantly: should it be done?

Are there easier things to do?

Can we increase utilisation of very expensive GPUs?
Is this easier than rewriting software?

Dol live in a big tech bubble?

