
Thrift RPC parsing using BPF

David Wei
Meta



● Meta DC traffic is mostly RPC

● In-kernel consumers
○ Offload hot work

○ Drop work early

○ Reduce overheads

● Produce/consume object streams instead of byte streams

Seems like a good idea?



Katran: BPF L4 LB



Katran: BPF L4 LB

● Stateless

● Simple
○ Hashing

○ Read configuration

○ Forwarding

● Complexity in userspace control plane
○ Configuration

○ Observability

○ Health Monitoring

● Skips TCP stack, no unneeded copies



BMC: Memcache in-kernel cache



● Open source Memcache

● Single server

● GET requests use UDP

● Bounded key + value lengths

● Unknown configuration
○ Is mitigations=on?

● https://www.usenix.org/conference/nsdi21/presentation/ghigoff

BMC: Memcache in-kernel cache

https://www.usenix.org/conference/nsdi21/presentation/ghigoff


● There is no magic 😔
● Work needs to be done somewhere
● Where do efficiency wins come from?

BMC: Memcache in-kernel cache



● Avoid syscalls

● Fewer context switches

● Avoid copies

● Skip networking stack
○ Especially if request ends up being dropped in userspace

● Reduce locking

● Increase locality

● Specialisation - HW offloads

Where does performance come from?



● Ship of Theseus

● Distributed service

● Requests are RPC (Thrift) over TCP

● Lots of userspace code
○ ACL

○ Logging

○ Overload protection

○ Just usual userspace spaghetti...

● High rate of change

Why Meta Memcache might not work?



● What might a hot in-kernel cache save?
○ Two copies

○ Key sharding, maybe

○ Syscalls don't matter (for us)

● But only for GET

● Now need to de/serialise Thrift

● And still have to do logging/etc

● Have to always trade off complexity/effort vs efficiency gains
○ Can this be solved with more $

Why Meta Memcache might not work?



● Various mechanisms of doing ZC Tx

● New, non-page flipping mechanism for doing ZC Rx incoming

● Removes copies across kernel/user boundary

● Lets userspace do the things that need doing anyway...

Zero copy spoils the party?



● New zero copy features built on top of NIC HW header/data splitting

● Headers go into kernel memory

● Payload go into user/device memory

● Set up HW Rx queues and fill them with DMA mapped user/device memory

● NIC doesn't care what's in the Rx queue descriptors

Header/data split



● Most of the request is an opaque data payload

● Destined for e.g. NVMe flash, GPU memory

● Can parsing and handling Thrift in-kernel enable us to intelligently split the payload out?

What about large Thrift requests?



● As opposed to split control/data plane

● Something needs to read L7 headers to decide what to do

● Kernel could do this:
○ NIC -- DMA --> kernel memory

○ Parse and handle Thrift protocol

○ Kernel memory -- DMA --> PCIe

Thrift is inline



● Patches from Pavel Begunkov

● BPF_PROG_TYPE_IOURING

● Register BPF programs w/ io_uring instance

● Issue IORING_OP_BPF requests

● Do (almost) anything io_uring can

● https://github.com/isilence/linux/commits/bpf_v3/

BPF in io_uring

https://github.com/isilence/linux/commits/bpf_v3/


● NIC -- DMA --> user memory

● Parse and handle Thrift

● User memory -- DMA --> PCIe

● Maybe save syscalls?
○ But, they don't matter for us

Zero copy spoils the party, again?



(Bad) Idea coming?

● What if we can split L7 headers?



(Bad) Idea coming?

● What if we can split L7 headers?

● Using BPF?



(Bad) Idea coming?

● What if we can split L7 headers?

● Using BPF?

● Really really early on?



(Bad) Idea coming?

● What if we can split L7 headers?

● Using BPF?

● Really really early on?

● While still in NIC buffers, before DMAing into Rx queue descriptors?



● What if we can split L7 headers?

● Using BPF?

● Really really early on?

● While still in NIC buffers, before DMAing into Rx queue descriptors?

● And then handle L7 headers, using BPF?

(Bad) Idea coming?



● NIC -- DMA --> user memory

● Parse and handle Thrift

● User memory -- DMA --> PCIe

(Bad) Idea coming?



● NIC -- DMA --> user memory

● Parse and handle Thrift

● User memory -- DMA --> PCIe

(Bad) Idea coming?



● Parse and handle Thrift

● L7 payload: NIC -- DMA --> user memory

● User memory -- DMA --> PCIe

(Bad) Idea coming?



● Different transport than TCP?

● Able to reorder packets at the NIC buffer level

● RPC protocol must support streaming deserialisation

● The right IPUs?

● BPF CPUs?

● Needs PSP?

Can it be done?



● We're never going to not use Thrift RPC

● We're also (probably) never going to rewrite services
○ We will run PHPHack and Python until the very end

● Needs new SKU w/ IPU and widescale deployment

● Hardware projects take years and the world changes in the meantime

● Observability + security

More importantly: should it be done?



● Are there easier things to do?

● Can we increase utilisation of very expensive GPUs?

● Is this easier than rewriting software?

● Do I live in a big tech bubble?

More importantly: should it be done?


