
Sched Ext
What’s New (& What’s Missing)?

David Vernet
Kernel engineer

Agenda

01 Background & current upstream
status

02 Latest and greatest features

03 What do we still need?

01 Background & current
upstream status

Refresher on sched_ext

01 Background & current upstream status

sched_ext enables scheduling policies to be
implemented in BPF programs
1. Write a scheduler policy in BPF
2. Compile it
3. Load it onto the system, letting BPF and core sched_ext infrastructure do all of the heavy lifting to enable it

- New sched_class, at a lower priority than CFS
- No ABI stability restrictions – purely a kernel <-> kernel interface
- GPLv2 only

01 Background & current upstream status

01 Background & current upstream status

- No reboot needed – just recompile BPF prog and reload
- Simple and intuitive API for scheduling policies

- Does not require knowledge of core scheduler internals
- Safe, cannot crash the host

- Protection afforded by BPF verifier
- Watchdog boots sched_ext scheduler if a runnable task isn’t

scheduled within some timeout
- New sysrq key for booting sched_ext scheduler through

console
- See what works, then implement features in EEVDF

Rapid experimentation

01 Background & current upstream status

- EEVDF is a general purpose scheduler. Works OK for most
applications, not optimal for many

- Optimizes some major Meta services (more on this later)
- HHVM optimized by 1-3+% RPS
- Looking like a 3.6 - 5+% improvement for ads ranking

- Google has seen strong results on search, VM scheduling with
ghOSt

- Valve + Igalia seeing strong results on p99 frame rate latency
on the Steam Deck

Bespoke scheduling policies

01 Background & current upstream status

- Offload complicated logic such as load balancing to user
space

- Avoids workarounds like custom threading implementations
and other flavors of kernel bypass

- Use of floating point numbers
- BPF makes it easy to share data between the kernel and

user space

Moving complexity into user space
User space

v6 was sent in early May
- https://lore.kernel.org/bpf/20240501151312.635565-1-tj@kernel.org/
- Discussion is still contentious, but lots to be excited about

01 Background & current upstream status

https://lore.kernel.org/bpf/20240501151312.635565-1-tj@kernel.org/

The community has grown by a lot
- Valve, in cooperation with Igalia, are planning to ship a sched_ext scheduler on Steam Deck
- Ubuntu is considering shipping sched_ext in the official, upcoming 24.10 release

- Andrea Righi is actively developing a user space rust scheduler called scx_rustland
- Meta is deploying a sched_ext scheduler for its web workload, and is in the process of rolling out for ads and

ML training
- Google planning to port ghOSt to sched_ext down the line
- ChromeOS looking into using scx_layered with a focus on reducing latency
- Oculus is experimenting with sched_ext on an Android port

01 Background & current upstream status

https://ossna2024.sched.com/event/1aBOT/optimizing-scheduler-for-linux-gaming-changwoo-min-igalia
https://github.com/sched-ext/scx/tree/main/scheds/rust/scx_lavd
https://github.com/sched-ext/scx/tree/main/scheds/rust/scx_rustland

02 Latest and greatest features

Since last year, a lot of improvements have
landed in the core framework
- Much better debugging

- struct_ops hooks for dumping debug information
- Iterating over runqueues and printing out runnable task information
- See https://drive.google.com/file/d/1G48x_E3h-WGgx1AHszKS4efV2_Hpxsy5/view?usp=drive_link for demo

showing debug output
- Cpufreq integration

- Integrates with schedutil – generic API for scaling frequency on individual cores
- Pieces in place for implementing PELT (Per Entity Load Tracking) when needed

- Better semantics for dispatching
- New callback points such as task tick
- Better hotplug support
- Better local kptr support (BPF)
- Better backwards compatibility APIs for BPF progs and user space (BPF)

02 Building schedulers with sched_ext

https://drive.google.com/file/d/1G48x_E3h-WGgx1AHszKS4efV2_Hpxsy5/view?usp=drive_link

…and in the schedulers themselves
https://github.com/sched-ext/scx/tree/main/scheds/rust/scx_rusty

- scx_rusty: Work conserving, interactive, hybrid user space rust / BPF scheduler that implements load balancing +
statistics in user space, and hot-path scheduling decisions in the kernel
- Interactive, now seems to beat EEVDF for gaming workloads + workloads with lots of background CPU
- Work conserving – will always give idle CPUs to tasks (unless configured otherwise)
- NUMA aware
- Experimenting internally at Meta

https://github.com/sched-ext/scx/tree/main/scheds/rust/scx_layered

- scx_layered: JSON-config driven scheduler that can be used to tune for individual workloads
- Match tasks into “layers” by various qualifiers: task name, process name, niceness level, cgroup name
- Specify behavior for each layer: how much CPU may be allocated, should the layer preempt other layers, etc
- Running large portions of Meta web workloads, rolling out to others soon

02 Building schedulers with sched_ext

https://github.com/sched-ext/scx/tree/main/scheds/rust/scx_rusty
https://github.com/sched-ext/scx/tree/main/scheds/rust/scx_layered

rusty (borrowing concepts from lavd)
fundamentally changes dl scheduling
- EEVDF decides deadline based on virtual runtime eligibility + slice length:

- v_dl = v_ei + (slice / w_i)
- Problem is that a task can’t know how much CPU it needs before it runs
- Slice can be configured, but configuring it is brittle and very difficult to get right

- rusty instead uses 3 criteria to determine deadline:
- Task block frequency: Correlates with task’s role as a consumer
- Task waking frequency: Correlates with task’s role as a producer
- Task average runtime: Correlates with task’s role as a latency sensitive task
- Note: Having both high block and high waking frequency implies task in the middle of a task chain
- ^ Credit to Changwoo Min for this insight

- scx_rusty calculates task deadline as:
- v_dl = v_i + (wake_freq^2 * block_freq^3) / w_i + avg_runtime / w_i
- Producer + consumer tasks, and tasks with shorter avg runtime, get CPU more quickly
- Because deadline is based off of task vruntime, fairness is not violated

02 Building schedulers with sched_ext

Result: significantly better interactivity
- Throw huge amounts of load at the system, can still play games, listen to Spotify, etc

- Or for servers, can still service latency-sensitive tasks
- scx_rusty is work conserving, so typically still beats EEVDF on throughput as well

- See https://github.com/sched-ext/scx/pull/261 for more details
- See https://drive.google.com/file/d/1fyHt9BYGha6apl7HAkibwpy52UTi8-AQ/view for demo video showing wins

02 Building schedulers with sched_ext

https://github.com/sched-ext/scx/pull/261
https://drive.google.com/file/d/1fyHt9BYGha6apl7HAkibwpy52UTi8-AQ/view

…and in the schedulers themselves cont.
https://github.com/sched-ext/scx/tree/main/scheds/rust/scx_lavd

- scx_lavd: Interactive, gaming-driven scheduler optimized for Steam Deck
- Built by Changwoo Min at Igalia, designed to run on Steam Deck

- Currently, Valve planning to ship this scheduler in a future Steam Deck release
- Highly novel, effective techniques for interactivity, preemption
- Not (yet) NUMA or CCX aware

https://github.com/sched-ext/scx/tree/main/scheds/rust/scx_rustland

- scx_rustland: User space rust scheduler, optimized for interactivity
- Built by Andrea Righi at Canonical
- Most logic in user space in rust

- Minimal logic in kernel space, mostly just applying user space decisions
- Minimal overhead thanks to use of user -> kernel and kernel -> user ringbuffers

02 Building schedulers with sched_ext

https://github.com/sched-ext/scx/tree/main/scheds/rust/scx_lavd
https://github.com/sched-ext/scx/tree/main/scheds/rust/scx_rustland

Schedulers located in separate github repo
- https://github.com/sched-ext/scx
- Low barrier to entry

- Submit your scheduler, iterate on it as you want
- Ideas can be shared and applied to other schedulers
- Get code reviews (if you want them)

- Provides libraries and crates for working with schedulers
- Decouples packaging schedulers from the kernel release process

02 Building schedulers with sched_ext

https://github.com/sched-ext/scx

03 What do we still need?

First and foremost: moar BPF

03 What do we still need?

- A lot of things are still challenging to do in BPF
- Can’t hold spinlock around function calls (thanks to Kumar for improving this for static subprogs)
- Edge cases that we end up hitting a lot

- Can’t have a kptr inside of a nested struct
- Can’t have array of statically allocated kptrs
- Can’t return from bounded iterators

- Max stack size exceeded
- Allocating and moving between stacks for certain BPF programs

- Will be necessary to implement hierarchical cgroup scheduler (discussed more later)
- Reading + writing thread + cgroup local storage from users space
- libbpf-rs can sometimes be tricky to get right due to e.g. all of the references passed around in skeletons
- Rust bindgen – auto-create backwards-compat safe bindings?

Also needed: more people working on
schedulers
- A lot of the features we need are already in place in the core kernel part of sched_ext
- Lots of people willing to run benchmarks and test schedulers (thank you!), but people working on them is less

common
- Patches are very, very welcome; to any existing schedulers
- Feel free to write and submit your own scheduler, see few slides earlier

- What’s most helpful at this point:
- Improving existing schedulers, or adding new ones
- Implementing libraries or crates that schedulers can use
- Per Entity Load Tracking (PELT)
- Adding tests + testing framework

03 What do we still need?

Also more core sched_ext features
- Hierarchical cgroup scheduler → allow nested scheduler of schedulers for having multiple schedulers running on the

host
- Enables running in process, collaborate with user space runtime frameworks

- Other scheduler-relevant integration with rest of kernel
- Uncore frequency tuning

- Can become bottleneck when turbo is reached
- Idle policy

- Spin, enter specific cstate, etc?
- Should maybe be entirely separate from scheduler (idle vs. sched policies are currently decoupled)

- Enabling new workloads like paravirt scheduling (shout out to Joel)
- Will likely require work to integrate BPF with KVM to e.g. open opaque communication channels between host

BPF prog <-> guest BPF prog

03 What do we still need?

Joining upstream conversation
- https://lore.kernel.org/lkml/20240501151312.635565-40-tj@kernel.org/

- The more people chiming in (especially in representation of their employer / organization), the better
- Users will get this upstreamed

03 What do we still need?

https://lore.kernel.org/lkml/20240501151312.635565-40-tj@kernel.org/

