
LLVM BPF backend 
improvements

Open discussion



Goals

• The BPF Steering Committee (BSC) putting together SOW
• Share what is currently known
• Gather feedback from the community



LLVM and the verifier

• Translates code from C to LLVM IL to BPF byte code
• Performs a variety of optimizations
• Some optimizations break verification

• Developers need to resort to inline-assembly (Tetragon as an example)
• Correlated branches break Prevail Verifier



Code Coverage and BPF

• Code coverage tools is done via instrumentation
• Not yet supported in BPF
• Challenges exist as the BPF byte code is translated from byte code 

to machine code
• May require Kernel support (for code coverage)



Likely/Unlikely hints to the optimizer

• Hints may be present in the original C code
• This information is lost as BPF byte code is generated
• More advanced JIT compilers could leverage this
• Possibly extend this to even support PGO?



Possible solutions?

• Allow developers to provide explicit assertions
• LLVM and verifier could then give better feedback

• Integrate the verifier into LLVM to fail compilation on unverifiable 
code



Prevail Verifier

• Verifier for BPF byte code built on Abstract Interpretation
• Abstract Interpretation is a field of math used in static analysis
• Operates over a control flow graph of BPF byte code
• Walks the graph in weak topographical order to produce 

assertions
• Performs analysis in polynomial time



Issues with Prevail and LLVM

• LLVM optimizer folds code paths to avoid repeating tests
• This results in correlated branches
• Two branches that are always either both taken or both not taken
• Breaks LTO based analysis
• This occurs frequently in the Cilium code base
• Work around involves marking pointers as volatile

• Prevents LLVM from skipping the second test



Synthetic example of a correlated branch 

r5 = 0 // Flag set to false
r2 = *(u32 *)(r1 + 0) // R2 points to data
r1 = *(u32 *)(r1 + 4) // R1 points to data_end
r3 = r1 // R3 points to data
r1 = r2 // R1 points to data_end
r2 += 4 // R2 points to data + 4
r2 > r3 goto +1 // Jump if (data + 4) > data_end
r5 = 1 // Set flag to true
if r5 == 0 goto +1 // If flag is true, skip the next instruction
r0 = *(u32 *)(r1 + 0) // Dereference data



Solutions

• Provide finer grained control over LLVM optimizer?
• Break through in Abstract Interpretation to solve this?
• Suggestions?


	Slide 1: LLVM BPF backend improvements
	Slide 2: Goals
	Slide 3: LLVM and the verifier
	Slide 4: Code Coverage and BPF
	Slide 5: Likely/Unlikely hints to the optimizer
	Slide 6: Possible solutions?
	Slide 7: Prevail Verifier
	Slide 8: Issues with Prevail and LLVM
	Slide 9: Synthetic example of a correlated branch 
	Slide 10: Solutions

