
Evolution of stack trace capture with BPF

Andrii Nakryiko

BPF_MAP_TYPE_STACK_TRACE

struct {
 __uint(type, BPF_MAP_TYPE_STACK_TRACE);
 __uint(max_entries, MAX_STACK_TRACE_CNT);
 __uint(key, u32);
 __uint(value, u64[PERF_MAX_STACK_DEPTH]);
} stacks SEC(".maps");

int bpf_get_stackid(void *ctx, void *map, __u64 flags);

BPF side

id = bpf_get_stackid(ctx, &stacks, BPF_F_USER_STACK);
if (id < 0) {
 /* failure */
}

sample.ustack_id = id;

bpf_perf_event_output(ctx, …, &sample, sizeof(sample));

User space side

u64 addrs[PERF_MAX_STACK_DEPTH];

err = bpf_map_lookup_elem(map_fd, &sample.ustack_id, &addrs);
if (err) {
 /* error handling */
}

/* first N elements of addrs[] contain captured addresses */

Build ID support
● Possible to capture (build ID + file offset) instead of absolute address
● .map_flags = BPF_F_USER_BUILD_ID

● Special per-stack frame type:

#define BPF_BUILD_ID_SIZE 20

struct bpf_stack_build_id {

 __s32 status;

 unsigned char build_id[BPF_BUILD_ID_SIZE];

 union {

 __u64 offset;

 __u64 ip;

 };

};

Quirks of STACK_TRACE API

● Returns 32-bit stack ID (convenient!)
● Captures user space stack trace (BPF_F_USER_STACK)
● … or kernel stack trace (omit BPF_F_USER_STACK)

○ can’t capture both (and no one complained so far!)

● actual number of captured addresses is implicit (!)
● automatic stack deduplication

Implementation: the good

Specialized hash map implementation.
Stacks deduplication can save space.
Design favors space efficiency and performance.
Does not support hash collisions.

Implementation: the bad

Hash collisions are pretty frequent and unavoidable!

Hash collision handling and tradeoffs controlled through flags:
● BPF_F_FAST_STACK_CMP – compare only hashes
● BPF_F_REUSE_STACKID – overwrite previous stack trace

Implementation: the ugly

Choice between two bad options:

● Lose data
○ Without BPF_F_REUSE_STACKID – drop stack trace even if there is space available

● Corrupt data
○ With BPF_F_REUSE_STACKID – corrupt all previous references for same stack ID

Our production never uses BPF_F_REUSE_STACKID!

Implementation: the ugly

● Stack dedup makes removal from STACK_TRACE inherently racy.

● While user space deletes element, BPF side might use that stack ID.

● Can't free up space as soon as user space consumed stack trace (!)

● STACK_TRACE is not well suited for longer-running sessions.

Making it work in practice

"Double buffering" approach:

● two STACK_TRACE maps, one active at a time

● the other is read and cleared by user space

Cons:

● wastes memory

● complicates setup

● a small transition window:

○ user space consumes stack traces

○ while BPF side completes writing into it

Observations from production

CPU profiling didn't benefit much from deduplication of stacks.

Stack traces are pretty unique, overall.

Let users manage memory.

Evolution: bpf_get_stack()

int bpf_get_stack(void *ctx, void *buf, __u32 size, __u64 flags);

● captures stack trace into user-supplied buffer

● returns amount of actual data
○ clears the tail, making it usable as part of hash map key (!)

● up to user how to use it afterwards:
○ dedup as part of HASH map key

○ send to user space with BPF ringbuf

○ analyze in BPF code (but I'm not aware of anyone doing it)

● All but one use cases at Meta switched to bpf_get_stack()!

Are done yet?

Not quite.

There are still problems.

Synchronous API: assumptions

● stacks are captured synchronously

● assume worst case (i.e., NMI context)

● no page faults allowed, memory has to be physically present

Synchronous API: consequences

● user stack traces capture can be unreliable

● build ID support is restricted and unreliable

○ again, worst-case NMI assumptions;

○ fails if build ID ELF note is not physically present

○ fails if build ID is not within first 4KB of ELF file (!)

○ there were attempts to add build ID caching (NACKed, though)

● kernel stack traces are oblivious to this (reliable!)

Synchronous API: limitations

● (fundamentally) incompatible with SFrame or .eh_frame (DWARF)

stack unwinding approaches

● can’t wait for necessary data to be paged in

We need a new API

This time, asynchronous!

Asynchronous API: kernel stacks

● can't be done for kernel stack traces

● they are needed here and now (perf_event, kprobe, tracepoint)

● good news: it already works well even with synchronous API

Asynchronous API: user stacks

● Key observation: user stacks can be postponed

● requested in NMI – captured just before returning to user space

● user stack trace is still the same (user thread is frozen)

● do it in faultable (a.k.a. "sleepable") context

○ means we can wait for ELF data to be paged in, if necessary

API design: overview

● bpf_get_stackid()-like API, returning 32-bit stack ID

● ID is a reservation, stable and can be recorded upfront

● kernel stack trace is captured synchronously

● user stack trace is scheduled until return to user space

● bpf_map_lookup_elem() returns -EAGAIN if stack is not ready

API design: deduplication

● STACK_TRACE map is notoriously hard to use reliably

● Stack deduplication has to go as part of public API.

● One ID – one unique stack.

● Makes bpf_map_delete_elem() race-free (no risk of reusing ID)

API design: deduplication

● internal dedup is possible (but hidden from user)

○ Internal refcounting

○ bpf_map_delete_elem() drops refcount of underlying stack trace memory

● CPU vs memory trade off

○ complexity and CPU overhead with dedup

○ race-free deletes allow fast memory reuse!

Opinion: seems not worth it to bother.

API design: notifications

How to notify user that stack trace is ready?

API design: notifications

● trivial: no notification

○ (+) no code is best code

○ (-) user code forced to periodically retry (but maybe that's ok?)

API design: notifications

● easy: map-wide epoll notification whenever any stack trace is ready

○ (+) cheap and simple

○ (-) might be wasteful for user, causing many retries

API design: notifications

● wasteful: each slot supports epoll

○ (+) user can poll on each stack ID

○ (-) need to create FD for each ID

○ (-) each slot embeds wait_queue_head_t

API design: notifications

● (?) efficient: BPF ringbuf as an efficient delivery mechanism

○ (+) IDs are sent as they become "ready"

○ (+) Very efficient notification and consumption

○ (-) What to do if BPF ringbuf is full?

■ (?) User problem

■ (?) Some map stats

● (?) Send entire stack trace?

○ (+) variable-length data is possible, no space waste

○ (+) extensible way (BPF ringbuf record size is reported to user)

API design: customization

● should we allow custom BPF program for stack unwinding?

○ bpf_wq should be flexible and sufficient for that?

● good built-in kernel support is important

○ uretprobe "corrupting" stack trace

○ kernel can fix this up ([0])

● SFrame is coming?

● is limited .eh_frame (DWARF) support feasible?

[0] https://lore.kernel.org/all/20240508212605.4012172-3-andrii@kernel.org/

https://lore.kernel.org/all/20240508212605.4012172-3-andrii@kernel.org/
https://lore.kernel.org/all/20240508212605.4012172-3-andrii@kernel.org/

Thank you!

