
BPF Conformance
Testing against the IETF BPF ISA specification



Goals

• Overview of the BPF conformance suite
• Questions this presentation hopes to answer:

• Why test?
• What is being tested?
• How is it being tested?
• Who is using it?
• What should be tested that isn’t currently being tested?



Conformance

• The behavior of a runtime when executing BPF instructions
• Asks the question: Does the runtime implement the ISA correctly?
• Ensure fidelity of the execution to the developer’s intent
• Verifier safety – Incorrect implementation can lead to security 

problems
• Developer confidence that programs will execute as expected
• Validates the BPF ISA specification against the Linux JIT



What is being measured

• Check a runtime’s implementation of specific BPF instructions
• Tests if all instructions in a conformance group are implemented
• Tests for common implementation errors (sign extend as an 

example)
• Derived from the uBPF self-tests
• Slowly being extended as missing cases are discovered



How conformance is measure

• Each tests has three parts
• Pre-invariant

• Initial register state
• Initial stack contents
• Initial memory contents

• Code to execute
• Post-invariant

• Currently only tests r0 against an expected value
• Might be expanded further over time



Projects using bpf_conformance

• https://github.com/Alan-Jowett/bpf_conformance
• uBPF – The project where this originated
• eBPF-For-Windows
• Prevail – Used to check the verifier’s model of the instructions
• rbpf – Rust-based BPF runtime

https://github.com/Alan-Jowett/bpf_conformance


Establishing a conformance baseline

• Linux BPF implementations is the de facto standard
• Tests are executed against Linux
• If the test fails, it’s a bug

• Test bug (common)
• BPF ISA bug (rare)
• Linux kernel bug (not found yet)

• Permits black-box observation of the Linux Kernel’s behavior
• Required to preserve licensing of other projects



Example test

• # Copyright (c) Big Switch Networks, Inc
• # SPDX-License-Identifier: Apache-2.0
• -- asm
• ldxh %r0, [%r1]
• be16 %r0
• exit
• -- mem
• 11 22
• -- result
• 0x1122



What should the conformance tests 
measure?
• Checks for invalid instruction sequences?
• Invalid instruction sequence may become valid
• Test for psABI?

• If so, which one?
• Currently only r0 is measured on exit

• Is this sufficient?
• Should this include additional state?
• Should it include number of instructions executed?

• Tests for helper functions?
• Which ones?



Generating new tests

• Fuzzing the uBPF runtime uncovered bugs
• Permits comparing behavior of random programs between uBPF JIT, 

interpreter, and Linux Kernel runtime

• Manually reviewing the BPF ISA specification
• Time consuming and error prone

• Generate from machine readable model of the BPF ISA 
specification



Open Questions

• Is this the best way to achieve this goal?
• Is it possible to check the compiler’s model of the BPF ISA (not 

just the verifier and runtime)?
• Ownership of this project

• Currently within my personal GitHub
• Approved to migrate to BPF Foundation
• Some open legal questions remain


	Slide 1: BPF Conformance 
	Slide 2: Goals
	Slide 3: Conformance
	Slide 4: What is being measured
	Slide 5: How conformance is measure
	Slide 6: Projects using bpf_conformance
	Slide 7: Establishing a conformance baseline
	Slide 8: Example test
	Slide 9: What should the conformance tests measure?
	Slide 10: Generating new tests
	Slide 11: Open Questions

