
Vinay Kulkarni 
@vinaykul


@iSkibum

Extending libbpf for Kubernetes



Agenda

• Cloud-based Development Environment Use Case - Okteto Inc.


• Problem at Hand …


• … How eBPF Came to the Rescue


• Pain Points


• Proposed libbpf Extension


• Other Use Cases


• Discussion



Cloud-based Development Environment

• Write code locally -> rsync -> build or run tests in K8s pod


• https://kccncna2022.sched.com/event/182HU

https://kccncna2022.sched.com/event/182HU


Cloud-based Dev Env Pod Example
• Build/Test Environment Pod Spec


• Container: kube-build-ctr


• Resources:


• Reserves CPU and memory needed 
to build code, run a battery of tests


• Until recently, resources reserved in K8s 
pod was static


• Once scheduled and running, it 
cannot be changed without restart



Problem is … 

• Latest Kubernetes (v1.27) enables in-place restart-free resize of pod resources (CPU, memory)


• Vertical Pod Autoscaler is a tool that can resize pod resources based on usage


• Reactive - may not be good enough! (OOM kills)



Ideally … 

• Pod resources are resized before it becomes a problem 


• Proactive



eBPF makes it possible!

• action = (command == ‘make’) ? resize pod : have a beer ;) 



Some Rough Edges

• Not a very trivial way to find containerID <> cgroup_id mapping

• Trace (via perf_event) commands (e.g make) only for the container (cgroup_id) we care about



Some Rough Edges

• Maybe add bpf_strncmp(…)? NVM: It has already been added in libbpf



Proposed libbpf Helper Extensions
• Add: u64 bpf_get_container_cgroup_id(const char *container_id)


• e.g: container_id = 
“fd4078a980e9fc4ce9124b8a96f8da377c9a15a9ce87345e7660016e9cb4e7c1


• How: Scan /sys/fs/cgroup for container_id (For cgroups v1, look under /
sys/fs/cgroup/cpu)


• If found, return its i-node number


• If not, return 0


• Add: int bpf_get_cgroup_container_id(u64 cgroup_id, const char *container_id)


• How: ~~ `find /sys/fs/cgroup -inum <cgroup_id>



Other Use Cases
• Containerized Java application with high startup CPU requirements


• Running time CPU usage is 1/10th the startup time CPU needs


• Allocating too little CPU -> long startup time


• Allocating startup requirements -> underutilized cluster


• Need: Resize down pod quickly after startup


• eBPF network stats program attachment to pod veth


• Attach Tx stats counter eBPF program to veth ingress in host ns


• Trace successful completion of CNI ADD to trigger attach



Discussion / Q & A
• At least two use cases that could leverage simplified cgroup_id <> 

container_id helpers.


• Is this enough justification to add the proposed helpers?


• If yes, is this the right way to do it?


• If not, any alternative suggestions?


