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01 kfunc background



kfuncs are the “modern” version of BPF 
helpers

- Allow BPF programs to call into the main kernel
- Hard dependency on BTF

- Defined in BTF sets
- No ABI stability guarantees. See https://docs.kernel.org/bpf/kfuncs.html#kfunc-lifecycle-expectations for more information

01 kfunc background

https://docs.kernel.org/bpf/kfuncs.html#kfunc-lifecycle-expectations


kfunc properties can be statically defined 
with flags

- All flags are static, and defined for the whole kfunc
- KF_ACQUIRE: kfunc acquires a reference to the first argument of the kfunc
- KF_RELEASE: kfunc releases a reference to the first argument of the kfunc
- KF_RET_NULL: kfunc may return NULL (i.e. the return type’s pointer will include PTR_MAYBE_NULL modifier)
- KF_TRUSTED_ARGS: kfunc takes only trusted pointer arguments (deprecated, will eventually be removed)
- KF_SLEEPABLE: kfunc may sleep
- KF_DESTRUCTIVE: kfunc may perform destructive actions – used with graph-type data structures
- KF_RCU: Pointer arguments, when not NULL, are guaranteed to be valid in an RCU read region
- KF_ITER_NEW: kfunc is a BPF iterator constructor
- KF_ITER_NEXT: kfunc implements BPF iterator next() method
- KF_ITER_DESTROY: kfunc implements a BPF iterator destructor

- Some flags make sense for whole kfunc (e.g. KF_RET_NULL, KF_SLEEPABLE, etc), others are really specific to individual arguments 
(KF_ACQUIRE, KF_RELEASE, KF_RCU, etc)

- kfunc flags defined in a single .long following the BTF ID of the kfunc itself
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02 Why is this useful?



Better UX and future proofing
- Not immediately pressing, but has come up before

- https://lore.kernel.org/bpf/20221217082506.1570898-2-davemarchevsky@fb.com/
- Being hacked around with annotations like __sz and __k

- Current API requires internal knowledge of the verifier
- kfunc authors should ideally need to know very little, if anything, about verifier internals
- Why does arg 0 correspond to “acquire” arg or “release” arg? Purely an implementation detail.
- Thankfully everything is very well documented at the moment, but we can do better

- Helpers are now tentatively frozen. Need to get kfuncs to feature parity
- This is supported for helpers, should be supported for kfuncs (luckily not blocking anything yet)
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How do we do this with BTF?
- The single .long following the BTF ID of the kfunc is fine for kfunc global flags, doesn’t work for per-arg
- In general, not sure how this would work with BTF sets

- BTF set for each kfunc, where index n are the flags for arg n?
- More generally, the API for defining kfuncs is arguably clunky and error prone

- Something closer to  EXPORT_SYMBOL_GPL would be ideal. Hide all of the complexity behind a macro
- Not sure how this would work with register_btf_kfunc_id_set() expecting a BTF set.
- Seems like we’ll require some post-processing ELF magic?
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