Per-arg kfunc flags

Enabling kfuncs to specify flags per-arg, in addition to per-kfunc

David Vernet

Linux kernel engineer 00 Met(]

01 kfunc background

Age N d a 02 Why is this useful?

03 How do we do it?

01 kfunc background

01 kfunc background

kfuncs are the “modern” version of BPF
helpers

- Allow BPF programs to call into the main kernel
- Hard dependency on BTF
- Defined in BTF sets

- No ABI stability guarantees. See https://docs.kernel.org/bpf/kfuncs.html#kfunc-lifecycle-expectations for more information

BPF program vmlinux and/or modules
struct task_struct *task; __bpf_kfunc void bpf_rcu_read_lock(void)
{
bpf_rcu_read_IOCkO; .. Pointers become MEM_RCU....... = rCU_read_IOCk();
}

task = read_task_from_map(pid);
if (task)
bpf printk("%s: protected with RCU!", task->comm); bpf_kfunc void bpf_rcu_read_unlock(void)

i {
bpf_rcu_read_unlock(); ... RCU read region closed, >

ensured by verifier rcu_read_unlock();

BTF_SET8 START(common_btf ids)
BTF_ID_FLAGS(func, bpf_rcu_read_lock)
BTF_ID_FLAGS(func, bpf_rcu_read_unlock)
BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL)

BTF_SET8 END(common_btf _ids)

https://docs.kernel.org/bpf/kfuncs.html#kfunc-lifecycle-expectations

01

kfunc background

kfunc properties can be statically defined
with flags

All flags are static, and defined for the whole kfunc
- KF_ACQUIRE: kfunc acquires a reference to the first argument of the kfunc
- KF_RELEASE: kfunc releases a reference to the first argument of the kfunc
- KF_RET_NULL: kfunc may return NULL (i.e. the return type’s pointer will include PTR MAYBE NULL modifier)
- KF_TRUSTED_ARGS: kfunc takes only trusted pointer arguments (deprecated, will eventually be removed)
- KF_SLEEPABLE: kfunc may sleep
- KF_DESTRUCTIVE: kfunc may perform destructive actions - used with graph-type data structures
- KF_RCU: Pointer arguments, when not NULL, are guaranteed to be valid in an RCU read region
- KF_ITER_NEW: kfunc is a BPF iterator constructor
- KF_ITER_NEXT: kfunc implements BPF iterator next() method
- KF_ITER_DESTROY: kfunc implements a BPF iterator destructor
Some flags make sense for whole kfunc (e.g. KF RET NULL, KF SLEEPABLE, etc), others are really specific to individual arguments
(KF_ACQUIRE, KF RELEASE, KF RCU, etc)
kfunc flags defined in a single . 1ong following the BTF ID of the kfunc itself

02 Why is this useful?

02 Why is this useful?

Better UX and future proofing

- Notimmediately pressing, but has come up before
- https://lore.kernel.org/bpf/20221217082506.1570898-2-davemarchevsky@fb.com/
- Being hacked around with annotations like szand k

- Current APl requires internal knowledge of the verifier
- kfunc authors should ideally need to know very little, if anything, about verifier internals
- Why does arg O correspond to “acquire” arg or “release” arg? Purely an implementation detail.
- Thankfully everything is very well documented at the moment, but we can do better
- Helpers are now tentatively frozen. Need to get kfuncs to feature parity
- Thisis supported for helpers, should be supported for kfuncs (luckily not blocking anything yet)

https://lore.kernel.org/bpf/20221217082506.1570898-2-davemarchevsky@fb.com/

03 Howdowedoit?

03 How dowedoit?

How do we do this with BTF?

- The single . 1ong following the BTF ID of the kfunc is fine for kfunc global flags, doesn’t work for per-arg
- In general, not sure how this would work with BTF sets
- BTF set for each kfunc, where index n are the flags for arg n?
- More generally, the API for defining kfuncs is arguably clunky and error prone
- Something closer to EXPORT_SYMBOL_GPL would be ideal. Hide all of the complexity behind a macro
- Not sure how this would work with register_btf_kfunc_id_set() expecting a BTF set.
- Seems like we’ll require some post-processing ELF magic?

