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01 struct_ops background



struct_ops are structs with callbacks and 
flags that can be defined in BPF programs

- Allow BPF programs to implement interfaces for the kernel
- Written up in LWN in a Kernel operations structures in BPF article: https://lwn.net/Articles/811631/
- Currently used for TCP congestion control, and HID BPF (https://lwn.net/Articles/909109/), and will be used for sched_ext
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struct_ops callbacks can invoke kfuncs
- Like any other BPF program, struct_ops callbacks can invoke kfuncs
- From example on prior slide, the example_enqueue BPF prog calls scx_bpf_dispatch() to put a task onto a sched_ext dispatch 

queue (DSQ)
- In example below, bpf_rcu_read_lock() and bpf_rcu_read_unlock() are also kfuncs
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02 Discussing feature



kfuncs may not be safe to call in all contexts
- kfuncs may have assumptions of context: it’s only valid to call me from certain places

- E.g. the kernel may set some global state before invoking a struct_ops callback, which a kfunc relies on
- It can therefore be unsafe to call kfuncs from certain callbacks

- In prior example, it’s valid to call scx_bpf_dispatch() from an ops.enqueue() callback, when the task is being enqueued
- It would be invalid to call scx_bpf_dispatch() from e.g. ops.select_cpu(), where a CPU is returned where a task should be 

migrated on the wakeup path
- It would be invalid to call any sched_ext kfunc from a non-sched-ext struct_ops program

- A kfunc that can be called from a BPF_PROG_TYPE_STRUCT_OPS program can be called from any struct_ops callback
- Verifier will only ensure that the kfunc may be called from a struct_ops program
- No filtering for which struct_ops program or callback should be allowed

- kfuncs may also nest, e.g.
- vmlinux → struct_ops callback X → kfunc A → struct_ops callback Y → kfunc B
- It may only be valid to call kfunc A from callback X
- It may be that no nesting is expected from kfunc B
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Support restricting kfunc scope to specific 
struct_ops callbacks

- Support specifying specific struct_ops callbacks for individual kfuncs
- Possibly support statically specifying how kfuncs may be nested

- Only for runtime safety checking
- Specifying struct_ops callback → kfunc permissions is sufficiently expressive so as to define allowed nesting

- Possibly support invoking different kfuncs in different contexts, but with same name in BPF program
- scx_bpf_dispatch() in ops.enqueue() vs. ops.dispatch() may correspond to different kfuncs in ext.c
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03 How do we do it?



sched_ext uses bits in global mask to track 
which kfuncs may be invoked
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sched_ext uses bits in global mask to track 
which kfuncs may be invoked



Can we define flags per callback, optionally 
specify masks of callback flags in kfuncs?

- Could it go into another .long following where we store the kfunc flags in BTF?
- Verifier then ensures struct_ops ←→ kfunc loops form a DAG, and kfuncs are invoked in correct place?
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