
Multi-kfunc sets
Scoping kfuncs to specific BPF struct_ops operations

David Vernet
Linux kernel engineer



Agenda

01 struct_ops background

02 Discussing feature

03 How do we do it?



01 struct_ops background



struct_ops are structs with callbacks and 
flags that can be defined in BPF programs

- Allow BPF programs to implement interfaces for the kernel
- Written up in LWN in a Kernel operations structures in BPF article: https://lwn.net/Articles/811631/
- Currently used for TCP congestion control, and HID BPF (https://lwn.net/Articles/909109/), and will be used for sched_ext

01 struct_ops background

https://lwn.net/Articles/811631/
https://lwn.net/Articles/909109/


struct_ops callbacks can invoke kfuncs
- Like any other BPF program, struct_ops callbacks can invoke kfuncs
- From example on prior slide, the example_enqueue BPF prog calls scx_bpf_dispatch() to put a task onto a sched_ext dispatch 

queue (DSQ)
- In example below, bpf_rcu_read_lock() and bpf_rcu_read_unlock() are also kfuncs

01 struct_ops background



02 Discussing feature



kfuncs may not be safe to call in all contexts
- kfuncs may have assumptions of context: it’s only valid to call me from certain places

- E.g. the kernel may set some global state before invoking a struct_ops callback, which a kfunc relies on
- It can therefore be unsafe to call kfuncs from certain callbacks

- In prior example, it’s valid to call scx_bpf_dispatch() from an ops.enqueue() callback, when the task is being enqueued
- It would be invalid to call scx_bpf_dispatch() from e.g. ops.select_cpu(), where a CPU is returned where a task should be 

migrated on the wakeup path
- It would be invalid to call any sched_ext kfunc from a non-sched-ext struct_ops program

- A kfunc that can be called from a BPF_PROG_TYPE_STRUCT_OPS program can be called from any struct_ops callback
- Verifier will only ensure that the kfunc may be called from a struct_ops program
- No filtering for which struct_ops program or callback should be allowed

- kfuncs may also nest, e.g.
- vmlinux → struct_ops callback X → kfunc A → struct_ops callback Y → kfunc B
- It may only be valid to call kfunc A from callback X
- It may be that no nesting is expected from kfunc B

02 Discussing feature



Support restricting kfunc scope to specific 
struct_ops callbacks

- Support specifying specific struct_ops callbacks for individual kfuncs
- Possibly support statically specifying how kfuncs may be nested

- Only for runtime safety checking
- Specifying struct_ops callback → kfunc permissions is sufficiently expressive so as to define allowed nesting

- Possibly support invoking different kfuncs in different contexts, but with same name in BPF program
- scx_bpf_dispatch() in ops.enqueue() vs. ops.dispatch() may correspond to different kfuncs in ext.c

02 Discussing feature



03 How do we do it?



sched_ext uses bits in global mask to track 
which kfuncs may be invoked

03 How do we do it?



sched_ext uses bits in global mask to track 
which kfuncs may be invoked

03 How do we do it?



03 How do we do it?



03 How do we do it?

sched_ext uses bits in global mask to track 
which kfuncs may be invoked



Can we define flags per callback, optionally 
specify masks of callback flags in kfuncs?

- Could it go into another .long following where we store the kfunc flags in BTF?
- Verifier then ensures struct_ops ←→ kfunc loops form a DAG, and kfuncs are invoked in correct place?

03 How do we do it?




