
Unifying kfunc and helper
defs
LSFMMBPF 2023

David Marchevsky
Software Engineer

TL;DR

Why does the verifier need to know about
functions BPF programs can call?

What does it need to know?

How do we currently give it this information?
Pros/cons of different approaches?

What parts of current approaches are kludges or
implementation details? Can we pick an
approach?

Why does the verifier need to know about
functions BPF programs can call?
Try writing safe helpers / kfuncs without any guarantees about input or calling context

Or writing BPF progs that know nothing about helper output

The verifier needs to know:

• For each function argument, what verification logic is necessary?
• How about the function's return value? If it returns ptr, can it be NULL?
• Does the function acquire or release any resources? If so, which?
• Any other function-specific verification logic
﹘ Catchall for anything that can't be expressed more generally
﹘ Usually hardcoded

Current Approach: bpf_func_proto
for helpers

Note that type flag is used to express
"maybe NULL"

Base type can be OR’d with type flags to
modify verification logic
.

const struct bpf_func_proto bpf_map_lookup_elem_proto = {
 .func = bpf_map_lookup_elem,
 .gpl_only = false,
 .pkt_access = true,
 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,

/* .ret_type = PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE */
 .arg1_type = ARG_CONST_MAP_PTR,
 .arg2_type = ARG_PTR_TO_MAP_KEY,
};

kernel/bpf/helpers.c

Pretty standard helper definition

Current Approach: bpf_func_proto
for helpers

static const struct bpf_func_proto bpf_kptr_xchg_proto = {
 .func = bpf_kptr_xchg,
 .gpl_only = false,
 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
 .ret_btf_id = BPF_PTR_POISON,
 .arg1_type = ARG_PTR_TO_KPTR,
 .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE,
 .arg2_btf_id = BPF_PTR_POISON,
};

Some arg type handling isn't expressed in
static, explicit definition. Here,
BPF_PTR_POISON arg2 and ret are replaced
by user-defined type by verifier.

kernel/bpf/helpers.c

A more complicated proto

OBJ_RELEASE type flag marks resource
being released

OBJ_RELEASE - what about
acquire?

static bool is_acquire_function(enum bpf_func_id func_id,
const struct bpf_map *map)

{
enum bpf_map_type map_type = map ? map->map_type :

BPF_MAP_TYPE_UNSPEC;

if (func_id == BPF_FUNC_sk_lookup_tcp ||
 func_id == BPF_FUNC_sk_lookup_udp ||
 func_id == BPF_FUNC_skc_lookup_tcp ||
 func_id == BPF_FUNC_ringbuf_reserve ||
 func_id == BPF_FUNC_kptr_xchg)

return true; kernel/bpf/verifier.c

func_id == BPF_FUNC_whatever -> “other
function-specific verification logic”

Helpers Kfuncs

Args / Retval Type and flags expressed via enums
in helper proto

Can return NULL? PTR_MAYBE_NULL type flag

Acquire Function-specific
(is_acquire_function and others)

Release OBJ_RELEASE type flag

Other function-specific
verification?

meta->func_id == BPF_FUNC_spin_unlock

Summary Mostly explicit definition in
bpf_func_proto

Current Approach: BTF for kfuncs

Kfunc flags used to express “acquire” and
“maybe returns NULL”

.

__bpf_kfunc struct bpf_cpumask *bpf_cpumask_create(void)
__bpf_kfunc u32 bpf_cpumask_first(const struct cpumask *cpumask)

BTF_ID_FLAGS(func, bpf_cpumask_create, KF_ACQUIRE | KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_cpumask_first, KF_RCU)

kernel/bpf/cpumask.c

Pretty standard kfunc definitions

BTF type of params / retval drives
verification logic

Type isn’t always sufficient, so flags exist
here too

Current Approach: BTF for kfuncs

Kfunc flag used to express “release” too

.

__bpf_kfunc void *bpf_dynptr_slice(const struct bpf_dynptr_kern *ptr, u32 offset,
 void *buffer, u32 buffer__szk)
__bpf_kfunc void bpf_obj_drop_impl(void *p__alloc, void *meta__ign)

BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE)
BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL)

kernel/bpf/helpers.c

Some more tricky definitions

__suffixes in param name adjust BTF
type-based verification logic
__szk -> this u32 contains size of ‘buffer’
__alloc -> object was allocated using
bpf_obj_new
__ign -> ignore type-specific logic entirely

Helpers Kfuncs

Args / Retval Type and flags expressed via enums
in helper proto

Look at BTF types of the kfunc

__suffixes modify type-specific logic

Can return NULL? PTR_MAYBE_NULL type flag KF_RET_NULL kfunc flag

Acquire Function-specific
(is_acquire_function and others)

KF_ACQUIRE kfunc flag

Release OBJ_RELEASE type flag KF_RELEASE kfunc flag

Other function-specific
verification?

meta->func_id == BPF_FUNC_spin_unlock btf_id ==
special_kfunc_list[KF_bpf_rbtree_remove]

Summary Mostly explicit definition in
bpf_func_proto

Mostly implicit based on BTF types,
w/ caveats

Problems - function-level vs arg-level properties

__bpf_kfunc void bpf_obj_drop_impl(void *p__alloc, void *meta__ign)

BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE)

What’s being released?
Verifier looks for arg w/ ref_obj_id != 0, presumably it’s been acquired

What if multiple args have ref_obj_id != 0?
“verifier internal error: more than one arg with ref_obj_id”

Helpers don’t have this issue
 .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE,
But they don’t have proper func-level properties either
“Is this helper a release function” -> “Does the helper have an OBJ_RELEASE-flagged arg?”

Problems - __suffixes

__bpf_kfunc void bpf_obj_drop_impl(void *p__alloc, void *meta__ign)

BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE)

__suffixes are a partial workaround for lack of arg-level flags

If the above function returned void *, how to tag it __alloc?

Problems - Lots of duplicated logic

check_helper_call and check_kfunc_call in verifier.c do the same thing

Where to go from here

What’s the desired end state?

Which parts of current implementations are kludges or implementation details?

I don’t have historical context, so asked Alexei

Desired end state

Strong preference for using information exposed by C language

Why? So path to making any arbitrary kernel function callable from BPF is as short as
possible

If we need to annotate functions, ideally we’d do so in a generally-useful way

e.g. sparse tool and __rcu

Kludge, Historical Artifact, Implementation Detail

bpf_func_proto: Predates BTF, doesn’t leverage C type info

__suffixes: BTF tags are better

kfunc flags: Implementation detail

BTF_ID_SET to expose kfunc: Something like EXPORT_SYMBOL would be better

Only thing that’s particularly blessed is use of BTF type info

TODO: Unify function definitions, dedupe
check_{helper,kfunc}_call

Help? Questions? Opinions?

