
BPF CI
One year later

Manu Bretelle, Daniel Müller, Mykola Lysenko - Meta - May 2023



BPF CI primer Patchwork

GithubKPD
1. Poll active series

2. Create/update PR

x86_64
x86_64

x86_64

aarch64
aarch64

aarch64

s390x
s390x

s390x

Self-hosted runners

3. Dispatch work 4. Collect results

5. Poll run results

6. Update series checks

LSFMMBPF 2022: https://docs.google.com/presentation/d/1RQZjLkbXmSFOr_4Sj5BdQsXbUh_vMshXi7w09pUpWsY/



Using CI before sending to ML [0]

● Fork kernel-patches/bpf
● Create a branch off bpf/bpf-next branch
● Push branch to your fork
● Create PR against kernel-patches/bpf@bpf{-next,}_base

[0] https://tinyurl.com/bpf-ci-test
[1] https://docs.github.com/en/actions/managing-workflow-runs/approving-workflow-runs-from-public-forks

Note: First-time contributors need approval [1]

https://tinyurl.com/bpf-ci-test
https://docs.github.com/en/actions/managing-workflow-runs/approving-workflow-runs-from-public-forks


CI coverage

● 2022:
○ Architectures: x86_64 and s390x
○ Kernel Compilation: gcc
○ Build kernel, selftests, and run selftests in VM

● Now:
○ Architectures: x86_64, s390x, and aarch64
○ Kernel compilation: gcc and llvm for x86_64/aarch64, gcc only for s390x
○ Build kernel, selftests, and run selftests in VM
○ Run veristat on x86_64 to catch regressions
○ 75% of kernel/bpf covered per LCOV



Infra/Testing changes

● x86_64/aarch64 running on bare metal
○ More cores to share
○ Faster VM runs (KVM not available on AWS VMs)
○ Build + test time from 14 min to 8 min

● test_* run in parallel
○ Overhead of building VM image for each test runs
○ Parallelized test time
○ More resources traded for faster turn around/clearer fault isolation

● Incremental kernel build
○ Beneficial for GH hosted runners
○ Shave few minutes off build time on s390x



UI improvement

● Failed test/error logs directly
accessible from GH UI

● Accessible from Workflow 
summary



Observability

● GH actions UI is limited
○ success/failure/cancelled
○ historical list of runs
○ Some limited filters
○ Generic to cater for wide audience

● REST API gives access to run results
○ Run, jobs, steps name, durations, results
○ Base commit, PR commit….

● Can poll API to collect and save data for later analysis/10,000ft overview
● Can answer:

○ “when did this test regress”
○ “how long does it take to build X, test X, per compiler, per arch…”
○ “rate of successes/failure, number of cancelled jobs”



Observability



Build x86_64/arm64, p90 ~400s Tests x86_64/arm64, p90 ~330s



Challenges: Flaky tests

1 flaky test turns CI red
“High” job success rate, yet low run success rate



Challenges: Flaky tests

● Relying on exact count + network
○ netcnt: serial_test_netcnt:FAIL:packets unexpected packets: actual 10001 != expected 10000
○ migrate_reuseport: count_requests:FAIL:count in BPF prog unexpected count in BPF prog: 

actual 22 != expected 25
● Probably exacerbated when running in a VM
● More investigation needed to understand source of flakiness



Discussion

● How to make community more aware of/invested in CI health?
○ Could export telemetry to external datasink/grafana
○ Preferably no extra infra to maintain 

● Get reliable base
○ to be more aggressive on enforcing a green CI
○ Possibly sending test results to series author on failure

● flaky tests
○ How to detect early, minimize their noise (FLAKYLIST turning them into warning? Multiple 

retries)
● Requiring coverage for new functionalities
● Increasing community participation
● Repro error environment is complicated, lot going on within GH actions


