
How BPF CI works?



Components

Patchwork



Patchwork (when?)

● Everything starts here
● Patchwork is a free, web-based patch tracking system …. It is intended to 

make the patch management process easier for … maintainers (from 
Wikipedia).

● All patches submitted to bpf@vger.kernel.org will appear on 
https://patchwork.kernel.org/project/netdevbpf/list/

● Patchwork shows the status for each patch that we tested
● Patchwork knows when individual patch is a part of patch series
● Patchwork can be enabled for any Linux kernel subsystem. In fact, many 

subsystems already have it enabled

https://en.wikipedia.org/wiki/Patchwork_(software)
mailto:bpf@vger.kernel.org
https://patchwork.kernel.org/project/netdevbpf/list/








Components

Patchwork Kernel Patches Daemon



Kernel Patches Daemon (KPD, who?)

KPD:

● is a daemon that does all the magic to start tests
● is implemented in python
● is currently hosted on Meta infrastructure
● identifies new bpf patches in the Patchwork BPF section
● creates pull request (PR) to kernel-patches/bpf GitHub (GH) repo
● merges GH actions on top of tested patches from 

https://github.com/kernel-patches/vmtest GH repo. vmtest references some CI 
scripts from https://github.com/libbpf/ci

● fetches test results from GH and posts them to Patchwork, when tests are 
done

https://github.com/kernel-patches
https://github.com/kernel-patches/bpf
https://github.com/kernel-patches/vmtest
https://github.com/libbpf/ci






Components

Patchwork Kernel Patches Daemon kernel_patches/bpf

kernel_patches/vm_test



GitHub (GH) repo (where?)

● kernel-patches/bpf is a GH repo that mirrors bpf-next.git and bpf.git kernel.org 
repos.

● once PR is created, GH will execute testing actions defined in 
https://github.com/kernel-patches/vmtest repo using GH runners

https://github.com/kernel-patches/vmtest




Components

Patchwork Kernel Patches Daemon kernel_patches/bpf 
GitHub repo

GitHub action runners (x86, s390x)

kernel_patches/vm_test



GitHub (GH) runners (where?)

● We are using self-hosted GH runners to execute tests
● We currently have setup for x86 (AWS cloud) and s390x (IBM cloud) runners 

to test little-endian and big-endian respectively
● We can add more architectures, but having cross-compilation enabled in 

libbpf/bpftool will unblock running everything on x86 runners with using 
architecture specific qemu VMs

● GH runners poll for work from GH, build kernel and self-tests. Then, GH 
runners starts qemu with built kernel that executes self-tests





BPF self-tests (what?)

● BPF self-tests are located in 
https://github.com/torvalds/linux/tree/master/tools/testing/selftests/bpf

● We are running test_progs, test_maps and test_verifier
● Successful test run:

○ https://github.com/kernel-patches/bpf/actions/runs/2259714629
● Failed test run:

○ https://github.com/kernel-patches/bpf/runs/6264834580?check_suite_focus=true

https://github.com/torvalds/linux/tree/master/tools/testing/selftests/bpf
https://github.com/kernel-patches/bpf/actions/runs/2259714629
https://github.com/kernel-patches/bpf/runs/6264834580?check_suite_focus=true






What is next?

● Add support for user-space sanitizers 
(https://en.wikipedia.org/wiki/AddressSanitizer)

● Add support for kernel-space sanitizers (https://github.com/google/kernel-sanitizers)
● Add support to test kernel built with clang. Currently Yonghong fixes LLVM issues 

manually
● Add support for arm64 - current path forward is to use Graviton 2 AWS instances
● Extend BPF CI to work with other Linux subsystems. For example, Btrfs with xfs 

tests or RCU with RCU torture tests
● Continue adding new BPF self-tests and iterating on BPF test_progs infra
● Make CI executable from local machine

https://en.wikipedia.org/wiki/AddressSanitizer
https://github.com/google/kernel-sanitizers


How to contribute?

Depending on what part of CI you are changing, you can create a pull request to

● https://github.com/kernel-patches/vmtest/
● https://github.com/libbpf/ci
● https://github.com/torvalds/linux/tree/master/tools/testing/selftests/bpf

Maintainers will be happy to review and merge your change in :-)

What is cool, we also run tests for CI code changes, so you will be able to see 
how test execution changed with your patch

https://github.com/kernel-patches/vmtest/
https://github.com/libbpf/ci
https://github.com/torvalds/linux/tree/master/tools/testing/selftests/bpf




Questions?


